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The physicist Leo Szilard once announced to his friend Hans Bethe 
that he was thinking of keeping a diary: "I don't intend to publish. I 
am merely going to record the facts for the information of God."  
"Don't you think God knows the facts?" Bethe asked.  
"Yes," said Szilard. 
"He knows the facts, but He does not know this version of the facts." 
 
       -Hans Christian von Baeyer, 
       Taming the Atom 
 
 



INTRODUCTION 
 

 
 
 
 
 
Welcome. And congratulations. I am delighted that you could make it. Getting here wasn't 
easy, I know. In fact, I suspect it was a little tougher than you realize. 
    To begin with, for you to be here now trillions of drifting atoms had somehow to assemble 
in an intricate and intriguingly obliging manner to create you. It's an arrangement so 
specialized and particular that it has never been tried before and will only exist this once. For 
the next many years (we hope) these tiny particles will uncomplainingly engage in all the 
billions of deft, cooperative efforts necessary to keep you intact and let you experience the 
supremely agreeable but generally underappreciated state known as existence. 
    Why atoms take this trouble is a bit of a puzzle. Being you is not a gratifying experience at 
the atomic level. For all their devoted attention, your atoms don't actually care about you-
indeed, don't even know that you are there. They don't even know that they are there. They are 
mindless particles, after all, and not even themselves alive. (It is a slightly arresting notion 
that if you were to pick yourself apart with tweezers, one atom at a time, you would produce a 
mound of fine atomic dust, none of which had ever been alive but all of which had once been 
you.) Yet somehow for the period of your existence they will answer to a single overarching 
impulse: to keep you you. 
    The bad news is that atoms are fickle and their time of devotion is fleeting-fleeting indeed. 
Even a long human life adds up to only about 650,000 hours. And when that modest 
milestone flashes past, or at some other point thereabouts, for reasons unknown your atoms 
will shut you down, silently disassemble, and go off to be other things. And that's it for you. 
    Still, you may rejoice that it happens at all. Generally speaking in the universe it doesn't, so 
far as we can tell. This is decidedly odd because the atoms that so liberally and congenially 
flock together to form living things on Earth are exactly the same atoms that decline to do it 
elsewhere. Whatever else it may be, at the level of chemistry life is curiously mundane: 
carbon, hydrogen, oxygen, and nitrogen, a little calcium, a dash of sulfur, a light dusting of 
other very ordinary elements-nothing you wouldn't find in any ordinary drugstore-and that's 
all you need. The only thing special about the atoms that make you is that they make you. 
That is of course the miracle of life. 
    Whether or not atoms make life in other corners of the universe, they make plenty else; 
indeed, they make everything else. Without them there would be no water or air or rocks, no 
stars and planets, no distant gassy clouds or swirling nebulae or any of the other things that 
make the universe so usefully material. Atoms are so numerous and necessary that we easily 
overlook that they needn't actually exist at all. There is no law that requires the universe to fill 
itself with small particles of matter or to produce light and gravity and the other physical 
properties on which our existence hinges. There needn't actually be a universe at all. For the 
longest time there wasn't. There were no atoms and no universe for them to float about in. 
There was nothing-nothing at all anywhere. 
    So thank goodness for atoms. But the fact that you have atoms and that they assemble in 
such a willing manner is only part of what got you here. To be here now, alive in the twenty-
first century and smart enough to know it, you also had to be the beneficiary of an 
extraordinary string of biological good fortune. Survival on Earth is a surprisingly tricky 
business. Of the billions and billions of species of living thing that have existed since the 
dawn of time, most-99.99 percent-are no longer around. Life on Earth, you see, is not only 



brief but dismayingly tenuous. It is a curious feature of our existence that we come from a 
planet that is very good at promoting life but even better at extinguishing it. 
    The average species on Earth lasts for only about four million years, so if you wish to be 
around for billions of years, you must be as fickle as the atoms that made you. You must be 
prepared to change everything about yourself-shape, size, color, species affiliation, 
everything-and to do so repeatedly. That's much easier said than done, because the process of 
change is random. To get from "protoplasmal primordial atomic globule" (as the Gilbert and 
Sullivan song put it) to sentient upright modern human has required you to mutate new traits 
over and over in a precisely timely manner for an exceedingly long while. So at various 
periods over the last 3.8 billion years you have abhorred oxygen and then doted on it, grown 
fins and limbs and jaunty sails, laid eggs, flicked the air with a forked tongue, been sleek, 
been furry, lived underground, lived in trees, been as big as a deer and as small as a mouse, 
and a million things more. The tiniest deviation from any of these evolutionary shifts, and you 
might now be licking algae from cave walls or lolling walrus-like on some stony shore or 
disgorging air through a blowhole in the top of your head before diving sixty feet for a 
mouthful of delicious sandworms. 
    Not only have you been lucky enough to be attached since time immemorial to a favored 
evolutionary line, but you have also been extremely-make that miraculously-fortunate in your 
personal ancestry. Consider the fact that for 3.8 billion years, a period of time older than the 
Earth's mountains and rivers and oceans, every one of your forebears on both sides has been 
attractive enough to find a mate, healthy enough to reproduce, and sufficiently blessed by fate 
and circumstances to live long enough to do so. Not one of your pertinent ancestors was 
squashed, devoured, drowned, starved, stranded, stuck fast, untimely wounded, or otherwise 
deflected from its life's quest of delivering a tiny charge of genetic material to the right 
partner at the right moment in order to perpetuate the only possible sequence of hereditary 
combinations that could result-eventually, astoundingly, and all too briefly-in you. 
 
 
This is a book about how it happened-in particular how we went from there being nothing at 
all to there being something, and then how a little of that something turned into us, and also 
some of what happened in between and since. That's a great deal to cover, of course, which is 
why the book is called A Short History of Nearly Everything, even though it isn't really. It 
couldn't be. But with luck by the time we finish it will feel as if it is. 
    My own starting point, for what it's worth, was an illustrated science book that I had as a 
classroom text when I was in fourth or fifth grade. The book was a standard-issue 1950s 
schoolbookbattered, unloved, grimly hefty-but near the front it had an illustration that just 
captivated me: a cutaway diagram showing the Earth's interior as it would look if you cut into 
the planet with a large knife and carefully withdrew a wedge representing about a quarter of 
its bulk. 
    It's hard to believe that there was ever a time when I had not seen such an illustration 
before, but evidently I had not for I clearly remember being transfixed. I suspect, in honesty, 
my initial interest was based on a private image of streams of unsuspecting eastbound 
motorists in the American plains states plunging over the edge of a sudden 4,000-mile-high 
cliff running between Central America and the North Pole, but gradually my attention did turn 
in a more scholarly manner to the scientific import of the drawing and the realization that the 
Earth consisted of discrete layers, ending in the center with a glowing sphere of iron and 
nickel, which was as hot as the surface of the Sun, according to the caption, and I remember 
thinking with real wonder: "How do they know that?" 
    I didn't doubt the correctness of the information for an instant-I still tend to trust the 
pronouncements of scientists in the way I trust those of surgeons, plumbers, and other 
possessors of arcane and privileged information-but I couldn't for the life of me conceive how 



any human mind could work out what spaces thousands of miles below us, that no eye had 
ever seen and no X ray could penetrate, could look like and be made of. To me that was just a 
miracle. That has been my position with science ever since. 
    Excited, I took the book home that night and opened it before dinner-an action that I expect 
prompted my mother to feel my forehead and ask if I was all right-and, starting with the first 
page, I read. 
    And here's the thing. It wasn't exciting at all. It wasn't actually altogether comprehensible. 
Above all, it didn't answer any of the questions that the illustration stirred up in a normal 
inquiring mind: How did we end up with a Sun in the middle of our planet? And if it is 
burning away down there, why isn't the ground under our feet hot to the touch? And why isn't 
the rest of the interior melting-or is it? And when the core at last burns itself out, will some of 
the Earth slump into the void, leaving a giant sinkhole on the surface? And how do you know 
this? How did you figure it out? 
    But the author was strangely silent on such details-indeed, silent on everything but 
anticlines, synclines, axial faults, and the like. It was as if he wanted to keep the good stuff 
secret by making all of it soberly unfathomable. As the years passed, I began to suspect that 
this was not altogether a private impulse. There seemed to be a mystifying universal 
conspiracy among textbook authors to make certain the material they dealt with never strayed 
too near the realm of the mildly interesting and was always at least a longdistance phone call 
from the frankly interesting. 
    I now know that there is a happy abundance of science writers who pen the most lucid and 
thrilling prose-Timothy Ferris, Richard Fortey, and Tim Flannery are three that jump out from 
a single station of the alphabet (and that's not even to mention the late but godlike Richard 
Feynman)-but sadly none of them wrote any textbook I ever used. All mine were written by 
men (it was always men) who held the interesting notion that everything became clear when 
expressed as a formula and the amusingly deluded belief that the children of America would 
appreciate having chapters end with a section of questions they could mull over in their own 
time. So I grew up convinced that science was supremely dull, but suspecting that it needn't 
be, and not really thinking about it at all if I could help it. This, too, became my position for a 
long time. 
    Then much later-about four or five years ago-I was on a long flight across the Pacific, 
staring idly out the window at moonlit ocean, when it occurred to me with a certain 
uncomfortable forcefulness that I didn't know the first thing about the only planet I was ever 
going to live on. I had no idea, for example, why the oceans were salty but the Great Lakes 
weren't. Didn't have the faintest idea. I didn't know if the oceans were growing more salty 
with time or less, and whether ocean salinity levels was something I should be concerned 
about or not. (I am very pleased to tell you that until the late 1970s scientists didn't know the 
answers to these questions either. They just didn't talk about it very audibly.) 
    And ocean salinity of course represented only the merest sliver of my ignorance. I didn't 
know what a proton was, or a protein, didn't know a quark from a quasar, didn't understand 
how geologists could look at a layer of rock on a canyon wall and tell you how old it was, 
didn't know anything really. I became gripped by a quiet, unwonted urge to know a little 
about these matters and to understand how people figured them out. That to me remained the 
greatest of all amazements-how scientists work things out. How does anybody know how 
much the Earth weighs or how old its rocks are or what really is way down there in the 
center? How can they know how and when the universe started and what it was like when it 
did? How do they know what goes on inside an atom? And how, come to that-or perhaps 
above all-can scientists so often seem to know nearly everything but then still can't predict an 
earthquake or even tell us whether we should take an umbrella with us to the races next 
Wednesday? 



    So I decided that I would devote a portion of my life-three years, as it now turns out-to 
reading books and journals and finding saintly, patient experts prepared to answer a lot of 
outstandingly dumb questions. The idea was to see if it isn't possible to understand and 
appreciate-marvel at, enjoy even-the wonder and accomplishments of science at a level that 
isn't too technical or demanding, but isn't entirely superficial either. 
    That was my idea and my hope, and that is what the book that follows is intended to be. 
Anyway, we have a great deal of ground to cover and much less than 650,000 hours in which 
to do it, so let's begin. 
 
 
 
 



 
 
 
 

PART  I           LOST IN THE COSMOS 
 
 

 

 

 

They’re all in the same plane. 
They’re all going around in the 
same direction. . . . It’s perfect, 
you know.  It’s gorgeous. It’s 

almost uncanny. 
 

-Astronomer Geoffrey Marcy 
describing the solar system 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

1   HOW TO BUILD A UNIVERSE 

NO MATTER HOW hard you try you will never be able to grasp just how tiny, how spatially 
unassuming, is a proton. It is just way too small. 

    A proton is an infinitesimal part of an atom, which is itself of course an insubstantial thing. 
Protons are so small that a little dib of ink like the dot on this i can hold something in the 
region of 500,000,000,000 of them, rather more than the number of seconds contained in half 
a million years. So protons are exceedingly microscopic, to say the very least. 

    Now imagine if you can (and of course you can’t) shrinking one of those protons down to a 
billionth of its normal size into a space so small that it would make a proton look enormous. 
Now pack into that tiny, tiny space about an ounce of matter. Excellent. You are ready to start 
a universe. 

    I’m assuming of course that you wish to build an inflationary universe. If you’d prefer 
instead to build a more old-fashioned, standard Big Bang universe, you’ll need additional 
materials. In fact, you will need to gather up everything there is every last mote and particle of 
matter between here and the edge of creation and squeeze it into a spot so infinitesimally 
compact that it has no dimensions at all. It is known as a singularity. 

    In either case, get ready for a really big bang. Naturally, you will wish to retire to a safe 
place to observe the spectacle. Unfortunately, there is nowhere to retire to because outside the 
singularity there is no where. When the universe begins to expand, it won’t be spreading out 
to fill a larger emptiness. The only space that exists is the space it creates as it goes. 

    It is natural but wrong to visualize the singularity as a kind of pregnant dot hanging in a 
dark, boundless void. But there is no space, no darkness. The singularity has no “around” 
around it. There is no space for it to occupy, no place for it to be. We can’t even ask how long 
it has been there—whether it has just lately popped into being, like a good idea, or whether it 
has been there forever, quietly awaiting the right moment. Time doesn’t exist. There is no past 
for it to emerge from.  

    And so, from nothing, our universe begins. 

    In a single blinding pulse, a moment of glory much too swift and expansive for any form of 
words, the singularity assumes heavenly dimensions, space beyond conception. In the first 
lively second (a second that many cosmologists will devote careers to shaving into ever-finer 
wafers) is produced gravity and the other forces that govern physics. In less than a minute the 
universe is a million billion miles across and growing fast. There is a lot of heat now, ten 
billion degrees of it, enough to begin the nuclear reactions that create the lighter elements—
principally hydrogen and helium, with a dash (about one atom in a hundred million) of 
lithium. In three minutes, 98 percent of all the matter there is or will ever be has been 
produced. We have a universe. It is a place of the most wondrous and gratifying possibility, 
and beautiful, too. And it was all done in about the time it takes to make a sandwich. 



    When this moment happened is a matter of some debate. Cosmologists have long argued 
over whether the moment of creation was 10 billion years ago or twice that or something in 
between. The consensus seems to be heading for a figure of about 13.7 billion years, but these 
things are notoriously difficult to measure, as we shall see further on. All that can really be 
said is that at some indeterminate point in the very distant past, for reasons unknown, there 
came the moment known to science as t = 0. We were on our way. 

    There is of course a great deal we don’t know, and much of what we think we know we 
haven’t known, or thought we’ve known, for long. Even the notion of the Big Bang is quite a 
recent one. The idea had been kicking around since the 1920s, when Georges Lemaître, a 
Belgian priest-scholar, first tentatively proposed it, but it didn’t really become an active 
notion in cosmology until the mid-1960s when two young radio astronomers made an 
extraordinary and inadvertent discovery. 

    Their names were Arno Penzias and Robert Wilson. In 1965, they were trying to make use 
of a large communications antenna owned by Bell Laboratories at Holmdel, New Jersey, but 
they were troubled by a persistent background noise—a steady, steamy hiss that made any 
experimental work impossible. The noise was unrelenting and unfocused. It came from every 
point in the sky, day and night, through every season. For a year the young astronomers did 
everything they could think of to track down and eliminate the noise. They tested every 
electrical system. They rebuilt instruments, checked circuits, wiggled wires, dusted plugs. 
They climbed into the dish and placed duct tape over every seam and rivet. They climbed 
back into the dish with brooms and scrubbing brushes and carefully swept it clean of what 
they referred to in a later paper as “white dielectric material,” or what is known more 
commonly as bird shit. Nothing they tried worked. 

    Unknown to them, just thirty miles away at Princeton University, a team of scientists led by 
Robert Dicke was working on how to find the very thing they were trying so diligently to get 
rid of. The Princeton researchers were pursuing an idea that had been suggested in the 1940s 
by the Russian-born astrophysicist George Gamow that if you looked deep enough into space 
you should find some cosmic background radiation left over from the Big Bang. Gamow 
calculated that by the time it crossed the vastness of the cosmos, the radiation would reach 
Earth in the form of microwaves. In a more recent paper he had even suggested an instrument 
that might do the job: the Bell antenna at Holmdel. Unfortunately, neither Penzias and 
Wilson, nor any of the Princeton team, had read Gamow’s paper. 

    The noise that Penzias and Wilson were hearing was, of course, the noise that Gamow had 
postulated. They had found the edge of the universe, or at least the visible part of it, 90 billion 
trillion miles away. They were “seeing” the first photons—the most ancient light in the 
universe—though time and distance had converted them to microwaves, just as Gamow had 
predicted. In his book The Inflationary Universe , Alan Guth provides an analogy that helps to 
put this finding in perspective. If you think of peering into the depths of the universe as like 
looking down from the hundredth floor of the Empire State Building (with the hundredth floor 
representing now and street level representing the moment of the Big Bang), at the time of 
Wilson and Penzias’s discovery the most distant galaxies anyone had ever detected were on 
about the sixtieth floor, and the most distant things—quasars—were on about the twentieth. 
Penzias and Wilson’s finding pushed our acquaintance with the visible universe to within half 
an inch of the sidewalk. 

    Still unaware of what caused the noise, Wilson and Penzias phoned Dicke at Princeton and 
described their problem to him in the hope that he might suggest a solution. Dicke realized at 



once what the two young men had found. “Well, boys, we’ve just been scooped,” he told his 
colleagues as he hung up the phone. 

    Soon afterward the Astrophysical Journal published two articles: one by Penzias and 
Wilson describing their experience with the hiss, the other by Dicke’s team explaining its 
nature. Although Penzias and Wilson had not been looking for cosmic background radiation, 
didn’t know what it was when they had found it, and hadn’t described or interpreted its 
character in any paper, they received the 1978 Nobel Prize in physics. The Princeton 
researchers got only sympathy. According to Dennis Overbye in Lonely Hearts of the Cosmos 
, neither Penzias nor Wilson altogether understood the significance of what they had found 
until they read about it in the New York Times . 

    Incidentally, disturbance from cosmic background radiation is something we have all 
experienced. Tune your television to any channel it doesn’t receive, and about 1 percent of the 
dancing static you see is accounted for by this ancient remnant of the Big Bang. The next time 
you complain that there is nothing on, remember that you can always watch the birth of the 
universe. 

    Although everyone calls it the Big Bang, many books caution us not to think of it as an 
explosion in the conventional sense. It was, rather, a vast, sudden expansion on a whopping 
scale. So what caused it? 

   One notion is that perhaps the singularity was the relic of an earlier, collapsed universe—
that we’re just one of an eternal cycle of expanding and collapsing universes, like the bladder 
on an oxygen machine. Others attribute the Big Bang to what they call “a false vacuum” or “a 
scalar field” or “vacuum energy”—some quality or thing, at any rate, that introduced a 
measure of instability into the nothingness that was. It seems impossible that you could get 
something from nothing, but the fact that once there was nothing and now there is a universe 
is evident proof that you can. It may be that our universe is merely part of many larger 
universes, some in different dimensions, and that Big Bangs are going on all the time all over 
the place. Or it may be that space and time had some other forms altogether before the Big 
Bang—forms too alien for us to imagine—and that the Big Bang represents some sort of 
transition phase, where the universe went from a form we can’t understand to one we almost 
can. “These are very close to religious questions,” Dr. Andrei Linde, a cosmologist at 
Stanford, told the New York Times in 2001. 

    The Big Bang theory isn’t about the bang itself but about what happened after the bang. 
Not long after, mind you. By doing a lot of math and watching carefully what goes on in 
particle accelerators, scientists believe they can look back to 10-43seconds after the moment of 
creation, when the universe was still so small that you would have needed a microscope to 
find it. We mustn’t swoon over every extraordinary number that comes before us, but it is 
perhaps worth latching on to one from time to time just to be reminded of their ungraspable 
and amazing breadth. Thus 10-43is 0.0000000000000000000000000000000000000000001, or 
one 10 million trillion trillion trillionths of a second.* 

                                                 
*A word on scientific notation: Since very large numbers are cumbersome to write and nearly impossible to read, scientists 
use a shorthand involving powers (or multiples) of ten in which, for instance, 10,000,000,000 is written 1010 and 6,500,000 
becomes 6.5 x 106. The principle is based very simply on multiples of ten: 10 x 10 (or 100) becomes 102; 10 x 10 x 10 (or 
1,000) is 103; and so on, obviously and indefinitely. The little superscript number signifies the number of zeroes following 
the larger principal number. Negative notations provide latter in print (especially essentially a mirror image, with the 
superscript number indicating the number of spaces to the right of the decimal point (so 10-4 means 0.0001). Though I salute 
the principle, it remains an amazement to me that anyone seeing "1.4 x 109 km3’ would see at once that that signifies 1.4 



    Most of what we know, or believe we know, about the early moments of the universe is 
thanks to an idea called inflation theory first propounded in 1979 by a junior particle 
physicist, then at Stanford, now at MIT, named Alan Guth. He was thirty-two years old and, 
by his own admission, had never done anything much before. He would probably never have 
had his great theory except that he happened to attend a lecture on the Big Bang given by 
none other than Robert Dicke. The lecture inspired Guth to take an interest in cosmology, and 
in particular in the birth of the universe. 

    The eventual result was the inflation theory, which holds that a fraction of a moment after 
the dawn of creation, the universe underwent a sudden dramatic expansion. It inflated—in 
effect ran away with itself, doubling in size every 10-34seconds. The whole episode may have 
lasted no more than 10-30seconds—that’s one million million million million millionths of a 
second—but it changed the universe from something you could hold in your hand to 
something at least 10,000,000,000,000,000,000,000,000 times bigger. Inflation theory 
explains the ripples and eddies that make our universe possible. Without it, there would be no 
clumps of matter and thus no stars, just drifting gas and everlasting darkness. 

    According to Guth’s theory, at one ten-millionth of a trillionth of a trillionth of a trillionth 
of a second, gravity emerged. After another ludicrously brief interval it was joined by 
electromagnetism and the strong and weak nuclear forces—the stuff of physics. These were 
joined an instant later by swarms of elementary particles—the stuff of stuff. From nothing at 
all, suddenly there were swarms of photons, protons, electrons, neutrons, and much else—
between 1079and 1089of each, according to the standard Big Bang theory. 

    Such quantities are of course ungraspable. It is enough to know that in a single cracking 
instant we were endowed with a universe that was vast—at least a hundred billion light-years 
across, according to the theory, but possibly any size up to infinite—and perfectly arrayed for 
the creation of stars, galaxies, and other complex systems. 

  

    What is extraordinary from our point of view is how well it turned out for us. If the 
universe had formed just a tiny bit differently—if gravity were fractionally stronger or 
weaker, if the expansion had proceeded just a little more slowly or swiftly—then there might 
never have been stable elements to make you and me and the ground we stand on. Had gravity 
been a trifle stronger, the universe itself might have collapsed like a badly erected tent, 
without precisely the right values to give it the right dimensions and density and component 
parts. Had it been weaker, however, nothing would have coalesced. The universe would have 
remained forever a dull, scattered void. 

    This is one reason that some experts believe there may have been many other big bangs, 
perhaps trillions and trillions of them, spread through the mighty span of eternity, and that the 
reason we exist in this particular one is that this is one we could exist in. As Edward P. Tryon 
of Columbia University once put it: “In answer to the question of why it happened, I offer the 
modest proposal that our Universe is simply one of those things which happen from time to 

                                                                                                                                                         
billion cubic kilometers, and no less a wonder that they would choose the former over the in a book designed for the general 
reader, where the example was found). On the assumption that many general readers are as unmathematical as I am, I will use 
them sparingly, though they are occasionally unavoidable, not least in a chapter dealing with things on a cosmic scale. 
 
 



time.” To which adds Guth: “Although the creation of a universe might be very unlikely, 
Tryon emphasized that no one had counted the failed attempts.” 

 

 

    Martin Rees, Britain’s astronomer royal, believes that there are many universes, possibly an 
infinite number, each with different attributes, in different combinations, and that we simply 
live in one that combines things in the way that allows us to exist. He makes an analogy with 
a very large clothing store: “If there is a large stock of clothing, you’re not surprised to find a 
suit that fits. If there are many universes, each governed by a differing set of numbers, there 
will be one where there is a particular set of numbers suitable to life. We are in that one.” 

    Rees maintains that six numbers in particular govern our universe, and that if any of these 
values were changed even very slightly things could not be as they are. For example, for the 
universe to exist as it does requires that hydrogen be converted to helium in a precise but 
comparatively stately manner—specifically, in a way that converts seven one-thousandths of 
its mass to energy. Lower that value very slightly—from 0.007 percent to 0.006 percent, 
say—and no transformation could take place: the universe would consist of hydrogen and 
nothing else. Raise the value very slightly—to 0.008 percent—and bonding would be so 
wildly prolific that the hydrogen would long since have been exhausted. In either case, with 
the slightest tweaking of the numbers the universe as we know and need it would not be here. 

  

I should say that everything is just right so far. In the long term, gravity may turn out to be a 
little too strong, and one day it may halt the expansion of the universe and bring it collapsing 
in upon itself, till it crushes itself down into another singularity, possibly to start the whole 
process over again. On the other hand it may be too weak and the universe will keep racing 
away forever until everything is so far apart that there is no chance of material interactions, so 
that the universe becomes a place that is inert and dead, but very roomy. The third option is 
that gravity is just right—“critical density” is the cosmologists’ term for it—and that it will 
hold the universe together at just the right dimensions to allow things to go on indefinitely. 
Cosmologists in their lighter moments sometimes call this the Goldilocks effect—that 
everything is just right. (For the record, these three possible universes are known respectively 
as closed, open, and flat.) 

    Now the question that has occurred to all of us at some point is: what would happen if you 
traveled out to the edge of the universe and, as it were, put your head through the curtains? 
Where would your head be if it were no longer in the universe? What would you find beyond? 
The answer, disappointingly, is that you can never get to the edge of the universe. That’s not 
because it would take too long to get there—though of course it would—but because even if 
you traveled outward and outward in a straight line, indefinitely and pugnaciously, you would 
never arrive at an outer boundary. Instead, you would come back to where you began (at 
which point, presumably, you would rather lose heart in the exercise and give up). The reason 
for this is that the universe bends, in a way we can’t adequately imagine, in conformance with 
Einstein’s theory of relativity (which we will get to in due course). For the moment it is 
enough to know that we are not adrift in some large, ever-expanding bubble. Rather, space 
curves, in a way that allows it to be boundless but finite. Space cannot even properly be said 
to be expanding because, as the physicist and Nobel laureate Steven Weinberg notes, “solar 



systems and galaxies are not expanding, and space itself is not expanding.” Rather, the 
galaxies are rushing apart. It is all something of a challenge to intuition. Or as the biologist J. 
B. S. Haldane once famously observed: “The universe is not only queerer than we suppose; it 
is queerer than we can suppose.” 

    The analogy that is usually given for explaining the curvature of space is to try to imagine 
someone from a universe of flat surfaces, who had never seen a sphere, being brought to 
Earth. No matter how far he roamed across the planet’s surface, he would never find an edge. 
He might eventually return to the spot where he had started, and would of course be utterly 
confounded to explain how that had happened. Well, we are in the same position in space as 
our puzzled flatlander, only we are flummoxed by a higher dimension. 

    Just as there is no place where you can find the edge of the universe, so there is no place 
where you can stand at the center and say: “This is where it all began. This is the centermost 
point of it all.” We are all at the center of it all. Actually, we don’t know that for sure; we 
can’t prove it mathematically. Scientists just assume that we can’t really be the center of the 
universe—think what that would imply—but that the phenomenon must be the same for all 
observers in all places. Still, we don’t actually know. 

    For us, the universe goes only as far as light has traveled in the billions of years since the 
universe was formed. This visible universe—the universe we know and can talk about—is a 
million million million million (that’s 1,000,000,000,000,000,000,000,000) miles across. But 
according to most theories the universe at large—the meta-universe, as it is sometimes 
called—is vastly roomier still. According to Rees, the number of light-years to the edge of 
this larger, unseen universe would be written not “with ten zeroes, not even with a hundred, 
but with millions.” In short, there’s more space than you can imagine already without going to 
the trouble of trying to envision some additional beyond. 

    For a long time the Big Bang theory had one gaping hole that troubled a lot of people—
namely that it couldn’t begin to explain how we got here. Although 98 percent of all the 
matter that exists was created with the Big Bang, that matter consisted exclusively of light 
gases: the helium, hydrogen, and lithium that we mentioned earlier. Not one particle of the 
heavy stuff so vital to our own being—carbon, nitrogen, oxygen, and all the rest—emerged 
from the gaseous brew of creation. But—and here’s the troubling point—to forge these heavy 
elements, you need the kind of heat and energy of a Big Bang. Yet there has been only one 
Big Bang and it didn’t produce them. So where did they come from? 

    Interestingly, the man who found the answer to that question was a cosmologist who 
heartily despised the Big Bang as a theory and coined the term “Big Bang” sarcastically, as a 
way of mocking it. We’ll get to him shortly, but before we turn to the question of how we got 
here, it might be worth taking a few minutes to consider just where exactly “here” is. 

 



2  WELCOME TO THE SOLAR SYSTEM 

ASTRONOMERS THESE DAYS can do the most amazing things. If someone struck a match 
on the Moon, they could spot the flare. From the tiniest throbs and wobbles of distant stars 
they can infer the size and character and even potential habitability of planets much too 
remote to be seen—planets so distant that it would take us half a million years in a spaceship 
to get there. With their radio telescopes they can capture wisps of radiation so preposterously 
faint that the total amount of energy collected from outside the solar system by all of them 
together since collecting began (in 1951) is “less than the energy of a single snowflake 
striking the ground,” in the words of Carl Sagan. 

    In short, there isn’t a great deal that goes on in the universe that astronomers can’t find 
when they have a mind to. Which is why it is all the more remarkable to reflect that until 1978 
no one had ever noticed that Pluto has a moon. In the summer of that year, a young 
astronomer named James Christy at the U.S. Naval Observatory in Flagstaff, Arizona, was 
making a routine examination of photographic images of Pluto when he saw that there was 
something there—something blurry and uncertain but definitely other than Pluto. Consulting a 
colleague named Robert Harrington, he concluded that what he was looking at was a moon. 
And it wasn’t just any moon. Relative to the planet, it was the biggest moon in the solar 
system. 

    This was actually something of a blow to Pluto’s status as a planet, which had never been 
terribly robust anyway. Since previously the space occupied by the moon and the space 
occupied by Pluto were thought to be one and the same, it meant that Pluto was much smaller 
than anyone had supposed—smaller even than Mercury. Indeed, seven moons in the solar 
system, including our own, are larger. 

    Now a natural question is why it took so long for anyone to find a moon in our own solar 
system. The answer is that it is partly a matter of where astronomers point their instruments 
and partly a matter of what their instruments are designed to detect, and partly it’s just Pluto. 
Mostly it’s where they point their instruments. In the words of the astronomer Clark 
Chapman: “Most people think that astronomers get out at night in observatories and scan the 
skies. That’s not true. Almost all the telescopes we have in the world are designed to peer at 
very tiny little pieces of the sky way off in the distance to see a quasar or hunt for black holes 
or look at a distant galaxy. The only real network of telescopes that scans the skies has been 
designed and built by the military.” 

    We have been spoiled by artists’ renderings into imagining a clarity of resolution that 
doesn’t exist in actual astronomy. Pluto in Christy’s photograph is faint and fuzzy—a piece of 
cosmic lint—and its moon is not the romantically backlit, crisply delineated companion orb 
you would get in a National Geographic painting, but rather just a tiny and extremely 
indistinct hint of additional fuzziness. Such was the fuzziness, in fact, that it took seven years 
for anyone to spot the moon again and thus independently confirm its existence. 

    One nice touch about Christy’s discovery was that it happened in Flagstaff, for it was there 
in 1930 that Pluto had been found in the first place. That seminal event in astronomy was 
largely to the credit of the astronomer Percival Lowell. Lowell, who came from one of the 
oldest and wealthiest Boston families (the one in the famous ditty about Boston being the 
home of the bean and the cod, where Lowells spoke only to Cabots, while Cabots spoke only 
to God), endowed the famous observatory that bears his name, but is most indelibly 
remembered for his belief that Mars was covered with canals built by industrious Martians for 



purposes of conveying water from polar regions to the dry but productive lands nearer the 
equator. 

    Lowell’s other abiding conviction was that there existed, somewhere out beyond Neptune, 
an undiscovered ninth planet, dubbed Planet X. Lowell based this belief on irregularities he 
detected in the orbits of Uranus and Neptune, and devoted the last years of his life to trying to 
find the gassy giant he was certain was out there. Unfortunately, he died suddenly in 1916, at 
least partly exhausted by his quest, and the search fell into abeyance while Lowell’s heirs 
squabbled over his estate. However, in 1929, partly as a way of deflecting attention away 
from the Mars canal saga (which by now had become a serious embarrassment), the Lowell 
Observatory directors decided to resume the search and to that end hired a young man from 
Kansas named Clyde Tombaugh. 

    Tombaugh had no formal training as an astronomer, but he was diligent and he was astute, 
and after a year’s patient searching he somehow spotted Pluto, a faint point of light in a 
glittery firmament. It was a miraculous find, and what made it all the more striking was that 
the observations on which Lowell had predicted the existence of a planet beyond Neptune 
proved to be comprehensively erroneous. Tombaugh could see at once that the new planet 
was nothing like the massive gasball Lowell had postulated, but any reservations he or anyone 
else had about the character of the new planet were soon swept aside in the delirium that 
attended almost any big news story in that easily excited age. This was the first American-
discovered planet, and no one was going to be distracted by the thought that it was really just 
a distant icy dot. It was named Pluto at least partly because the first two letters made a 
monogram from Lowell’s initials. Lowell was posthumously hailed everywhere as a genius of 
the first order, and Tombaugh was largely forgotten, except among planetary astronomers, 
who tend to revere him. 

    A few astronomers continue to think there may be a Planet X out there—a real whopper, 
perhaps as much as ten times the size of Jupiter, but so far out as to be invisible to us. (It 
would receive so little sunlight that it would have almost none to reflect.) The idea is that it 
wouldn’t be a conventional planet like Jupiter or Saturn—it’s much too far away for that; 
we’re talking perhaps 4.5 trillion miles—but more like a sun that never quite made it. Most 
star systems in the cosmos are binary (double-starred), which makes our solitary sun a slight 
oddity. 

    As for Pluto itself, nobody is quite sure how big it is, or what it is made of, what kind of 
atmosphere it has, or even what it really is. A lot of astronomers believe it isn’t a planet at all, 
but merely the largest object so far found in a zone of galactic debris known as the Kuiper 
belt. The Kuiper belt was actually theorized by an astronomer named F. C. Leonard in 1930, 
but the name honors Gerard Kuiper, a Dutch native working in America, who expanded the 
idea. The Kuiper belt is the source of what are known as short-period comets—those that 
come past pretty regularly—of which the most famous is Halley’s comet. The more reclusive 
long-period comets (among them the recent visitors Hale-Bopp and Hyakutake) come from 
the much more distant Oort cloud, about which more presently. 

    It is certainly true that Pluto doesn’t act much like the other planets. Not only is it runty and 
obscure, but it is so variable in its motions that no one can tell you exactly where Pluto will be 
a century hence. Whereas the other planets orbit on more or less the same plane, Pluto’s 
orbital path is tipped (as it were) out of alignment at an angle of seventeen degrees, like the 
brim of a hat tilted rakishly on someone’s head. Its orbit is so irregular that for substantial 
periods on each of its lonely circuits around the Sun it is closer to us than Neptune is. For 



most of the 1980s and 1990s, Neptune was in fact the solar system’s most far-flung planet. 
Only on February 11, 1999, did Pluto return to the outside lane, there to remain for the next 
228 years. 

    So if Pluto really is a planet, it is certainly an odd one. It is very tiny: just one-quarter of 1 
percent as massive as Earth. If you set it down on top of the United States, it would cover not 
quite half the lower forty-eight states. This alone makes it extremely anomalous; it means that 
our planetary system consists of four rocky inner planets, four gassy outer giants, and a tiny, 
solitary iceball. Moreover, there is every reason to suppose that we may soon begin to find 
other even larger icy spheres in the same portion of space. Then we will have problems. After 
Christy spotted Pluto’s moon, astronomers began to regard that section of the cosmos more 
attentively and as of early December 2002 had found over six hundred additional Trans-
Neptunian Objects, or Plutinos as they are alternatively called. One, dubbed Varuna, is nearly 
as big as Pluto’s moon. Astronomers now think there may be billions of these objects. The 
difficulty is that many of them are awfully dark. Typically they have an albedo, or 
reflectiveness, of just 4 percent, about the same as a lump of charcoal—and of course these 
lumps of charcoal are about four billion miles away. 

  

    And how far is that exactly? It’s almost beyond imagining. Space, you see, is just 
enormous—just enormous. Let’s imagine, for purposes of edification and entertainment, that 
we are about to go on a journey by rocketship. We won’t go terribly far—just to the edge of 
our own solar system—but we need to get a fix on how big a place space is and what a small 
part of it we occupy. 

    Now the bad news, I’m afraid, is that we won’t be home for supper. Even at the speed of 
light, it would take seven hours to get to Pluto. But of course we can’t travel at anything like 
that speed. We’ll have to go at the speed of a spaceship, and these are rather more lumbering. 
The best speeds yet achieved by any human object are those of the Voyager 1 and2 spacecraft, 
which are now flying away from us at about thirty-five thousand miles an hour. 

    The reason the Voyager craft were launched when they were (in August and September 
1977) was that Jupiter, Saturn, Uranus, and Neptune were aligned in a way that happens only 
once every 175 years. This enabled the two Voyagers to use a “gravity assist” technique in 
which the craft were successively flung from one gassy giant to the next in a kind of cosmic 
version of “crack the whip.” Even so, it took them nine years to reach Uranus and a dozen to 
cross the orbit of Pluto. The good news is that if we wait until January 2006 (which is when 
NASA’s New Horizons spacecraft is tentatively scheduled to depart for Pluto) we can take 
advantage of favorable Jovian positioning, plus some advances in technology, and get there in 
only a decade or so—though getting home again will take rather longer, I’m afraid. At all 
events, it’s going to be a long trip. 

    Now the first thing you are likely to realize is that space is extremely well named and rather 
dismayingly uneventful. Our solar system may be the liveliest thing for trillions of miles, but 
all the visible stuff in it—the Sun, the planets and their moons, the billion or so tumbling 
rocks of the asteroid belt, comets, and other miscellaneous drifting detritus—fills less than a 
trillionth of the available space. You also quickly realize that none of the maps you have ever 
seen of the solar system were remotely drawn to scale. Most schoolroom charts show the 
planets coming one after the other at neighborly intervals—the outer giants actually cast 
shadows over each other in many illustrations—but this is a necessary deceit to get them all 



on the same piece of paper. Neptune in reality isn’t just a little bit beyond Jupiter, it’s way 
beyond Jupiter—five times farther from Jupiter than Jupiter is from us, so far out that it 
receives only 3 percent as much sunlight as Jupiter. 

    Such are the distances, in fact, that it isn’t possible, in any practical terms, to draw the solar 
system to scale. Even if you added lots of fold-out pages to your textbooks or used a really 
long sheet of poster paper, you wouldn’t come close. On a diagram of the solar system to 
scale, with Earth reduced to about the diameter of a pea, Jupiter would be over a thousand feet 
away and Pluto would be a mile and a half distant (and about the size of a bacterium, so you 
wouldn’t be able to see it anyway). On the same scale, Proxima Centauri, our nearest star, 
would be almost ten thousand miles away. Even if you shrank down everything so that Jupiter 
was as small as the period at the end of this sentence, and Pluto was no bigger than a 
molecule, Pluto would still be over thirty-five feet away. 

    So the solar system is really quite enormous. By the time we reach Pluto, we have come so 
far that the Sun—our dear, warm, skin-tanning, life-giving Sun—has shrunk to the size of a 
pinhead. It is little more than a bright star. In such a lonely void you can begin to understand 
how even the most significant objects—Pluto’s moon, for example—have escaped attention. 
In this respect, Pluto has hardly been alone. Until the Voyager expeditions, Neptune was 
thought to have two moons; Voyager found six more. When I was a boy, the solar system was 
thought to contain thirty moons. The total now is “at least ninety,” about a third of which have 
been found in just the last ten years. 

    The point to remember, of course, is that when considering the universe at large we don’t 
actually know what is in our own solar system. 

    Now the other thing you will notice as we speed past Pluto is that we are speeding past 
Pluto. If you check your itinerary, you will see that this is a trip to the edge of our solar 
system, and I’m afraid we’re not there yet. Pluto may be the last object marked on 
schoolroom charts, but the system doesn’t end there. In fact, it isn’t even close to ending 
there. We won’t get to the solar system’s edge until we have passed through the Oort cloud, a 
vast celestial realm of drifting comets, and we won’t reach the Oort cloud for another—I’m so 
sorry about this—ten thousand years. Far from marking the outer edge of the solar system, as 
those schoolroom maps so cavalierly imply, Pluto is barely one-fifty-thousandth of the way. 

    Of course we have no prospect of such a journey. A trip of 240,000 miles to the Moon still 
represents a very big undertaking for us. A manned mission to Mars, called for by the first 
President Bush in a moment of passing giddiness, was quietly dropped when someone worked 
out that it would cost $450 billion and probably result in the deaths of all the crew (their DNA 
torn to tatters by high-energy solar particles from which they could not be shielded). 

    Based on what we know now and can reasonably imagine, there is absolutely no prospect 
that any human being will ever visit the edge of our own solar system—ever. It is just too far. 
As it is, even with the Hubble telescope, we can’t see even into the Oort cloud, so we don’t 
actually know that it is there. Its existence is probable but entirely hypothetical.* 

    About all that can be said with confidence about the Oort cloud is that it starts somewhere 
beyond Pluto and stretches some two light-years out into the cosmos. The basic unit of 
measure in the solar system is the Astronomical Unit, or AU, representing the distance from 
                                                 
* Properly called the Opik-Oort cloud, it is named for the Estonian astronomer Ernst Opik, who hypothesized its 
existence in 1932, and for the Dutch astronomer Jan Oort, who refined the calculations eighteen years later. 



the Sun to the Earth. Pluto is about forty AUs from us, the heart of the Oort cloud about fifty 
thousand. In a word, it is remote. 

    But let’s pretend again that we have made it to the Oort cloud. The first thing you might 
notice is how very peaceful it is out here. We’re a long way from anywhere now—so far from 
our own Sun that it’s not even the brightest star in the sky. It is a remarkable thought that that 
distant tiny twinkle has enough gravity to hold all these comets in orbit. It’s not a very strong 
bond, so the comets drift in a stately manner, moving at only about 220 miles an hour. From 
time to time some of these lonely comets are nudged out of their normal orbit by some slight 
gravitational perturbation—a passing star perhaps. Sometimes they are ejected into the 
emptiness of space, never to be seen again, but sometimes they fall into a long orbit around 
the Sun. About three or four of these a year, known as long-period comets, pass through the 
inner solar system. Just occasionally these stray visitors smack into something solid, like 
Earth. That’s why we’ve come out here now—because the comet we have come to see has 
just begun a long fall toward the center of the solar system. It is headed for, of all places, 
Manson, Iowa. It is going to take a long time to get there—three or four million years at 
least—so we’ll leave it for now, and return to it much later in the story. 

  

    So that’s your solar system. And what else is out there, beyond the solar system? Well, 
nothing and a great deal, depending on how you look at it. 

    In the short term, it’s nothing. The most perfect vacuum ever created by humans is not as 
empty as the emptiness of interstellar space. And there is a great deal of this nothingness until 
you get to the next bit of something. Our nearest neighbor in the cosmos, Proxima Centauri, 
which is part of the three-star cluster known as Alpha Centauri, is 4.3 light-years away, a sissy 
skip in galactic terms, but that is still a hundred million times farther than a trip to the Moon. 
To reach it by spaceship would take at least twenty-five thousand years, and even if you made 
the trip you still wouldn’t be anywhere except at a lonely clutch of stars in the middle of a 
vast nowhere. To reach the next landmark of consequence, Sirius, would involve another 4.6 
light-years of travel. And so it would go if you tried to star-hop your way across the cosmos. 
Just reaching the center of our own galaxy would take far longer than we have existed as 
beings. 

    Space, let me repeat, is enormous. The average distance between stars out there is 20 
million million miles. Even at speeds approaching those of light, these are fantastically 
challenging distances for any traveling individual. Of course, it is possible that alien beings 
travel billions of miles to amuse themselves by planting crop circles in Wiltshire or 
frightening the daylights out of some poor guy in a pickup truck on a lonely road in Arizona 
(they must have teenagers, after all), but it does seem unlikely. 

    Still, statistically the probability that there are other thinking beings out there is good. 
Nobody knows how many stars there are in the Milky Way—estimates range from 100 billion 
or so to perhaps 400 billion—and the Milky Way is just one of 140 billion or so other 
galaxies, many of them even larger than ours. In the 1960s, a professor at Cornell named 
Frank Drake, excited by such whopping numbers, worked out a famous equation designed to 
calculate the chances of advanced life in the cosmos based on a series of diminishing 
probabilities. 



    Under Drake’s equation you divide the number of stars in a selected portion of the universe 
by the number of stars that are likely to have planetary systems; divide that by the number of 
planetary systems that could theoretically support life; divide that by the number on which 
life, having arisen, advances to a state of intelligence; and so on. At each such division, the 
number shrinks colossally—yet even with the most conservative inputs the number of 
advanced civilizations just in the Milky Way always works out to be somewhere in the 
millions. 

    What an interesting and exciting thought. We may be only one of millions of advanced 
civilizations. Unfortunately, space being spacious, the average distance between any two of 
these civilizations is reckoned to be at least two hundred light-years, which is a great deal 
more than merely saying it makes it sound. It means for a start that even if these beings know 
we are here and are somehow able to see us in their telescopes, they’re watching light that left 
Earth two hundred years ago. So they’re not seeing you and me. They’re watching the French 
Revolution and Thomas Jefferson and people in silk stockings and powdered wigs—people 
who don’t know what an atom is, or a gene, and who make their electricity by rubbing a rod 
of amber with a piece of fur and think that’s quite a trick. Any message we receive from them 
is likely to begin “Dear Sire,” and congratulate us on the handsomeness of our horses and our 
mastery of whale oil. Two hundred light-years is a distance so far beyond us as to be, well, 
just beyond us. 

    So even if we are not really alone, in all practical terms we are. Carl Sagan calculated the 
number of probable planets in the universe at large at 10 billion trillion—a number vastly 
beyond imagining. But what is equally beyond imagining is the amount of space through 
which they are lightly scattered. “If we were randomly inserted into the universe,” Sagan 
wrote, “the chances that you would be on or near a planet would be less than one in a billion 
trillion trillion.” (That’s 1033, or a one followed by thirty-three zeroes.) “Worlds are precious.” 

    Which is why perhaps it is good news that in February 1999 the International Astronomical 
Union ruled officially that Pluto is a planet. The universe is a big and lonely place. We can do 
with all the neighbors we can get. 



3  THE REVEREND EVANS’S UNIVERSE 

WHEN THE SKIES are clear and the Moon is not too bright, the Reverend Robert Evans, a 
quiet and cheerful man, lugs a bulky telescope onto the back deck of his home in the Blue 
Mountains of Australia, about fifty miles west of Sydney, and does an extraordinary thing. He 
looks deep into the past and finds dying stars. 

    Looking into the past is of course the easy part. Glance at the night sky and what you see is 
history and lots of it—the stars not as they are now but as they were when their light left 
them. For all we know, the North Star, our faithful companion, might actually have burned 
out last January or in 1854 or at any time since the early fourteenth century and news of it just 
hasn’t reached us yet. The best we can say—can ever say—is that it was still burning on this 
date 680 years ago. Stars die all the time. What Bob Evans does better than anyone else who 
has ever tried is spot these moments of celestial farewell. 

    By day, Evans is a kindly and now semiretired minister in the Uniting Church in Australia, 
who does a bit of freelance work and researches the history of nineteenth-century religious 
movements. But by night he is, in his unassuming way, a titan of the skies. He hunts 
supernovae. 

    Supernovae occur when a giant star, one much bigger than our own Sun, collapses and then 
spectacularly explodes, releasing in an instant the energy of a hundred billion suns, burning 
for a time brighter than all the stars in its galaxy. “It’s like a trillion hydrogen bombs going off 
at once,” says Evans. If a supernova explosion happened within five hundred light-years of us, 
we would be goners, according to Evans—“it would wreck the show,” as he cheerfully puts it. 
But the universe is vast, and supernovae are normally much too far away to harm us. In fact, 
most are so unimaginably distant that their light reaches us as no more than the faintest 
twinkle. For the month or so that they are visible, all that distinguishes them from the other 
stars in the sky is that they occupy a point of space that wasn’t filled before. It is these 
anomalous, very occasional pricks in the crowded dome of the night sky that the Reverend 
Evans finds. 

    To understand what a feat this is, imagine a standard dining room table covered in a black 
tablecloth and someone throwing a handful of salt across it. The scattered grains can be 
thought of as a galaxy. Now imagine fifteen hundred more tables like the first one—enough to 
fill a Wal-Mart parking lot, say, or to make a single line two miles long—each with a random 
array of salt across it. Now add one grain of salt to any table and let Bob Evans walk among 
them. At a glance he will spot it. That grain of salt is the supernova. 

    Evans’s is a talent so exceptional that Oliver Sacks, in An Anthropologist on Mars, devotes 
a passage to him in a chapter on autistic savants—quickly adding that “there is no suggestion 
that he is autistic.” Evans, who has not met Sacks, laughs at the suggestion that he might be 
either autistic or a savant, but he is powerless to explain quite where his talent comes from. 

    “I just seem to have a knack for memorizing star fields,” he told me, with a frankly 
apologetic look, when I visited him and his wife, Elaine, in their picture-book bungalow on a 
tranquil edge of the village of Hazelbrook, out where Sydney finally ends and the boundless 
Australian bush begins. “I’m not particularly good at other things,” he added. “I don’t 
remember names well.” 

    “Or where he’s put things,” called Elaine from the kitchen. 



    He nodded frankly again and grinned, then asked me if I’d like to see his telescope. I had 
imagined that Evans would have a proper observatory in his backyard—a scaled-down 
version of a Mount Wilson or Palomar, with a sliding domed roof and a mechanized chair that 
would be a pleasure to maneuver. In fact, he led me not outside but to a crowded storeroom 
off the kitchen where he keeps his books and papers and where his telescope—a white 
cylinder that is about the size and shape of a household hot-water tank—rests in a homemade, 
swiveling plywood mount. When he wishes to observe, he carries them in two trips to a small 
deck off the kitchen. Between the overhang of the roof and the feathery tops of eucalyptus 
trees growing up from the slope below, he has only a letter-box view of the sky, but he says it 
is more than good enough for his purposes. And there, when the skies are clear and the Moon 
not too bright, he finds his supernovae. 

  

    The term supernova was coined in the 1930s by a memorably odd astrophysicist named 
Fritz Zwicky. Born in Bulgaria and raised in Switzerland, Zwicky came to the California 
Institute of Technology in the 1920s and there at once distinguished himself by his abrasive 
personality and erratic talents. He didn’t seem to be outstandingly bright, and many of his 
colleagues considered him little more than “an irritating buffoon.” A fitness buff, he would 
often drop to the floor of the Caltech dining hall or other public areas and do one-armed 
pushups to demonstrate his virility to anyone who seemed inclined to doubt it. He was 
notoriously aggressive, his manner eventually becoming so intimidating that his closest 
collaborator, a gentle man named Walter Baade, refused to be left alone with him. Among 
other things, Zwicky accused Baade, who was German, of being a Nazi, which he was not. On 
at least one occasion Zwicky threatened to kill Baade, who worked up the hill at the Mount 
Wilson Observatory, if he saw him on the Caltech campus. 

    But Zwicky was also capable of insights of the most startling brilliance. In the early 1930s, 
he turned his attention to a question that had long troubled astronomers: the appearance in the 
sky of occasional unexplained points of light, new stars. Improbably he wondered if the 
neutron—the subatomic particle that had just been discovered in England by James 
Chadwick, and was thus both novel and rather fashionable—might be at the heart of things. It 
occurred to him that if a star collapsed to the sort of densities found in the core of atoms, the 
result would be an unimaginably compacted core. Atoms would literally be crushed together, 
their electrons forced into the nucleus, forming neutrons. You would have a neutron star. 
Imagine a million really weighty cannonballs squeezed down to the size of a marble and—
well, you’re still not even close. The core of a neutron star is so dense that a single spoonful 
of matter from it would weigh 200 billion pounds. A spoonful! But there was more. Zwicky 
realized that after the collapse of such a star there would be a huge amount of energy left 
over—enough to make the biggest bang in the universe. He called these resultant explosions 
supernovae. They would be—they are—the biggest events in creation. 

    On January 15, 1934, the journal Physical Review published a very concise abstract of a 
presentation that had been conducted by Zwicky and Baade the previous month at Stanford 
University. Despite its extreme brevity—one paragraph of twenty-four lines—the abstract 
contained an enormous amount of new science: it provided the first reference to supernovae 
and to neutron stars; convincingly explained their method of formation; correctly calculated 
the scale of their explosiveness; and, as a kind of concluding bonus, connected supernova 
explosions to the production of a mysterious new phenomenon called cosmic rays, which had 
recently been found swarming through the universe. These ideas were revolutionary to say the 
least. Neutron stars wouldn’t be confirmed for thirty-four years. The cosmic rays notion, 



though considered plausible, hasn’t been verified yet. Altogether, the abstract was, in the 
words of Caltech astrophysicist Kip S. Thorne, “one of the most prescient documents in the 
history of physics and astronomy.” 

    Interestingly, Zwicky had almost no understanding of why any of this would happen. 
According to Thorne, “he did not understand the laws of physics well enough to be able to 
substantiate his ideas.” Zwicky’s talent was for big ideas. Others—Baade mostly—were left 
to do the mathematical sweeping up. 

    Zwicky also was the first to recognize that there wasn’t nearly enough visible mass in the 
universe to hold galaxies together and that there must be some other gravitational influence—
what we now call dark matter. One thing he failed to see was that if a neutron star shrank 
enough it would become so dense that even light couldn’t escape its immense gravitational 
pull. You would have a black hole. Unfortunately, Zwicky was held in such disdain by most 
of his colleagues that his ideas attracted almost no notice. When, five years later, the great 
Robert Oppenheimer turned his attention to neutron stars in a landmark paper, he made not a 
single reference to any of Zwicky’s work even though Zwicky had been working for years on 
the same problem in an office just down the hall. Zwicky’s deductions concerning dark matter 
wouldn’t attract serious attention for nearly four decades. We can only assume that he did a 
lot of pushups in this period. 

  

    Surprisingly little of the universe is visible to us when we incline our heads to the sky. Only 
about 6,000 stars are visible to the naked eye from Earth, and only about 2,000 can be seen 
from any one spot. With binoculars the number of stars you can see from a single location 
rises to about 50,000, and with a small two-inch telescope it leaps to 300,000. With a sixteen-
inch telescope, such as Evans uses, you begin to count not in stars but in galaxies. From his 
deck, Evans supposes he can see between 50,000 and 100,000 galaxies, each containing tens 
of billions of stars. These are of course respectable numbers, but even with so much to take in, 
supernovae are extremely rare. A star can burn for billions of years, but it dies just once and 
quickly, and only a few dying stars explode. Most expire quietly, like a campfire at dawn. In a 
typical galaxy, consisting of a hundred billion stars, a supernova will occur on average once 
every two or three hundred years. Finding a supernova therefore was a little bit like standing 
on the observation platform of the Empire State Building with a telescope and searching 
windows around Manhattan in the hope of finding, let us say, someone lighting a twenty-first-
birthday cake. 

    So when a hopeful and softspoken minister got in touch to ask if they had any usable field 
charts for hunting supernovae, the astronomical community thought he was out of his mind. 
At the time Evans had a ten-inch telescope—a very respectable size for amateur stargazing 
but hardly the sort of thing with which to do serious cosmology—and he was proposing to 
find one of the universe’s rarer phenomena. In the whole of astronomical history before Evans 
started looking in 1980, fewer than sixty supernovae had been found. (At the time I visited 
him, in August of 2001, he had just recorded his thirty-fourth visual discovery; a thirty-fifth 
followed three months later and a thirty-sixth in early 2003.) 

    Evans, however, had certain advantages. Most observers, like most people generally, are in 
the northern hemisphere, so he had a lot of sky largely to himself, especially at first. He also 
had speed and his uncanny memory. Large telescopes are cumbersome things, and much of 
their operational time is consumed with being maneuvered into position. Evans could swing 



his little sixteen-inch telescope around like a tail gunner in a dogfight, spending no more than 
a couple of seconds on any particular point in the sky. In consequence, he could observe 
perhaps four hundred galaxies in an evening while a large professional telescope would be 
lucky to do fifty or sixty. 

    Looking for supernovae is mostly a matter of not finding them. From 1980 to 1996 he 
averaged two discoveries a year—not a huge payoff for hundreds of nights of peering and 
peering. Once he found three in fifteen days, but another time he went three years without 
finding any at all. 

    “There is actually a certain value in not finding anything,” he said. “It helps cosmologists to 
work out the rate at which galaxies are evolving. It’s one of those rare areas where the 
absence of evidenceis evidence.” 

    On a table beside the telescope were stacks of photos and papers relevant to his pursuits, 
and he showed me some of them now. If you have ever looked through popular astronomical 
publications, and at some time you must have, you will know that they are generally full of 
richly luminous color photos of distant nebulae and the like—fairy-lit clouds of celestial light 
of the most delicate and moving splendor. Evans’s working images are nothing like that. They 
are just blurry black-and-white photos with little points of haloed brightness. One he showed 
me depicted a swarm of stars with a trifling flare that I had to put close to my face to see. 
This, Evans told me, was a star in a constellation called Fornax from a galaxy known to 
astronomy as NGC1365. (NGC stands for New General Catalogue, where these things are 
recorded. Once it was a heavy book on someone’s desk in Dublin; today, needless to say, it’s 
a database.) For sixty million silent years, the light from the star’s spectacular demise traveled 
unceasingly through space until one night in August of 2001 it arrived at Earth in the form of 
a puff of radiance, the tiniest brightening, in the night sky. It was of course Robert Evans on 
his eucalypt-scented hillside who spotted it. 

    “There’s something satisfying, I think,” Evans said, “about the idea of light traveling for 
millions of years through space and just at the right moment as it reaches Earth someone 
looks at the right bit of sky and sees it. It just seems right that an event of that magnitude 
should be witnessed.” 

    Supernovae do much more than simply impart a sense of wonder. They come in several 
types (one of them discovered by Evans) and of these one in particular, known as a Ia 
supernova, is important to astronomy because it always explodes in the same way, with the 
same critical mass. For this reason it can be used as a standard candle to measure the 
expansion rate of the universe. 

    In 1987 Saul Perlmutter at the Lawrence Berkeley lab in California, needing more Ia 
supernovae than visual sightings were providing, set out to find a more systematic method of 
searching for them. Perlmutter devised a nifty system using sophisticated computers and 
charge-coupled devices—in essence, really good digital cameras. It automated supernova 
hunting. Telescopes could now take thousands of pictures and let a computer detect the 
telltale bright spots that marked a supernova explosion. In five years, with the new technique, 
Perlmutter and his colleagues at Berkeley found forty-two supernovae. Now even amateurs 
are finding supernovae with charge-coupled devices. “With CCDs you can aim a telescope at 
the sky and go watch television,” Evans said with a touch of dismay. “It took all the romance 
out of it.” 



    I asked him if he was tempted to adopt the new technology. “Oh, no,” he said, “I enjoy my 
way too much. Besides”—he gave a nod at the photo of his latest supernova and smiled—“I 
can still beat them sometimes.” 

    The question that naturally occurs is “What would it be like if a star exploded nearby?” Our 
nearest stellar neighbor, as we have seen, is Alpha Centauri, 4.3 light-years away. I had 
imagined that if there were an explosion there we would have 4.3 years to watch the light of 
this magnificent event spreading across the sky, as if tipped from a giant can. What would it 
be like if we had four years and four months to watch an inescapable doom advancing toward 
us, knowing that when it finally arrived it would blow the skin right off our bones? Would  
people still go to work? Would farmers plant crops? Would anyone deliver them to the stores? 

    Weeks later, back in the town in New Hampshire where I live, I put these questions to John 
Thorstensen, an astronomer at Dartmouth College. “Oh no,” he said, laughing. “The news of 
such an event travels out at the speed of light, but so does the destructiveness, so you’d learn 
about it and die from it in the same instant. But don’t worry because it’s not going to happen.” 

    For the blast of a supernova explosion to kill you, he explained, you would have to be 
“ridiculously close”—probably within ten light-years or so. “The danger would be various 
types of radiation—cosmic rays and so on.” These would produce fabulous auroras, 
shimmering curtains of spooky light that would fill the whole sky. This would not be a good 
thing. Anything potent enough to put on such a show could well blow away the 
magnetosphere, the magnetic zone high above the Earth that normally protects us from 
ultraviolet rays and other cosmic assaults. Without the magnetosphere anyone unfortunate 
enough to step into sunlight would pretty quickly take on the appearance of, let us say, an 
overcooked pizza. 

    The reason we can be reasonably confident that such an event won’t happen in our corner 
of the galaxy, Thorstensen said, is that it takes a particular kind of star to make a supernova in 
the first place. A candidate star must be ten to twenty times as massive as our own Sun and 
“we don’t have anything of the requisite size that’s that close. The universe is a mercifully big 
place.” The nearest likely candidate he added, is Betelgeuse, whose various sputterings have 
for years suggested that something interestingly unstable is going on there. But Betelgeuse is 
fifty thousand light-years away. 

    Only half a dozen times in recorded history have supernovae been close enough to be 
visible to the naked eye. One was a blast in 1054 that created the Crab Nebula. Another, in 
1604, made a star bright enough to be seen during the day for over three weeks. The most 
recent was in 1987, when a supernova flared in a zone of the cosmos known as the Large 
Magellanic Cloud, but that was only barely visible and only in the southern hemisphere—and 
it was a comfortably safe 169,000 light-years away. 

  

    Supernovae are significant to us in one other decidedly central way. Without them we 
wouldn’t be here. You will recall the cosmological conundrum with which we ended the first 
chapter—that the Big Bang created lots of light gases but no heavy elements. Those came 
later, but for a very long time nobody could figure out  how they came later. The problem was 
that you needed something really hot—hotter even than the middle of the hottest stars—to 
forge carbon and iron and the other elements without which we would be distressingly 



immaterial. Supernovae provided the explanation, and it was an English cosmologist almost 
as singular in manner as Fritz Zwicky who figured it out. 

    He was a Yorkshireman named Fred Hoyle. Hoyle, who died in 2001, was described in an 
obituary in Nature as a “cosmologist and controversialist” and both of those he most certainly 
was. He was, according to Nature ’s obituary, “embroiled in controversy for most of his life” 
and “put his name to much rubbish.” He claimed, for instance, and without evidence, that the 
Natural History Museum’s treasured fossil of an Archaeopteryx was a forgery along the lines 
of the Piltdown hoax, causing much exasperation to the museum’s paleontologists, who had to 
spend days fielding phone calls from journalists from all over the world. He also believed that 
Earth was not only seeded by life from space but also by many of its diseases, such as 
influenza and bubonic plague, and suggested at one point that humans evolved projecting 
noses with the nostrils underneath as a way of keeping cosmic pathogens from falling into 
them. 

    It was he who coined the term “Big Bang,” in a moment of facetiousness, for a radio 
broadcast in 1952. He pointed out that nothing in our understanding of physics could account 
for why everything, gathered to a point, would suddenly and dramatically begin to expand. 
Hoyle favored a steady-state theory in which the universe was constantly expanding and 
continually creating new matter as it went. Hoyle also realized that if stars imploded they 
would liberate huge amounts of heat—100 million degrees or more, enough to begin to 
generate the heavier elements in a process known as nucleosynthesis. In 1957, working with 
others, Hoyle showed how the heavier elements were formed in supernova explosions. For 
this work, W. A. Fowler, one of his collaborators, received a Nobel Prize. Hoyle, shamefully, 
did not. 

    According to Hoyle’s theory, an exploding star would generate enough heat to create all the 
new elements and spray them into the cosmos where they would form gaseous clouds—the 
interstellar medium as it is known—that could eventually coalesce into new solar systems. 
With the new theories it became possible at last to construct plausible scenarios for how we 
got here. What we now think we know is this: 

    About 4.6 billion years ago, a great swirl of gas and dust some 15 billion miles across 
accumulated in space where we are now and began to aggregate. Virtually all of it—99.9 
percent of the mass of the solar system—went to make the Sun. Out of the floating material 
that was left over, two microscopic grains floated close enough together to be joined by 
electrostatic forces. This was the moment of conception for our planet. All over the inchoate 
solar system, the same was happening. Colliding dust grains formed larger and larger clumps. 
Eventually the clumps grew large enough to be called planetesimals. As these endlessly 
bumped and collided, they fractured or split or recombined in endless random permutations, 
but in every encounter there was a winner, and some of the winners grew big enough to 
dominate the orbit around which they traveled. 

    It all happened remarkably quickly. To grow from a tiny cluster of grains to a baby planet 
some hundreds of miles across is thought to have taken only a few tens of thousands of years. 
In just 200 million years, possibly less, the Earth was essentially formed, though still molten 
and subject to constant bombardment from all the debris that remained floating about. 

    At this point, about 4.5 billion years ago, an object the size of Mars crashed into Earth, 
blowing out enough material to form a companion sphere, the Moon. Within weeks, it is 
thought, the flung material had reassembled itself into a single clump, and within a year it had 



formed into the spherical rock that companions us yet. Most of the lunar material, it is 
thought, came from the Earth’s crust, not its core, which is why the Moon has so little iron 
while we have a lot. The theory, incidentally, is almost always presented as a recent one, but 
in fact it was first proposed in the 1940s by Reginald Daly of Harvard. The only recent thing 
about it is people paying any attention to it. 

    When Earth was only about a third of its eventual size, it was probably already beginning to 
form an atmosphere, mostly of carbon dioxide, nitrogen, methane, and sulfur. Hardly the sort 
of stuff that we would associate with life, and yet from this noxious stew life formed. Carbon 
dioxide is a powerful greenhouse gas. This was a good thing because the Sun was 
significantly dimmer back then. Had we not had the benefit of a greenhouse effect, the Earth 
might well have frozen over permanently, and life might never have gotten a toehold. But 
somehow life did. 

    For the next 500 million years the young Earth continued to be pelted relentlessly by 
comets, meteorites, and other galactic debris, which brought water to fill the oceans and the 
components necessary for the successful formation of life. It was a singularly hostile 
environment and yet somehow life got going. Some tiny bag of chemicals twitched and 
became animate. We were on our way. 

    Four billion years later people began to wonder how it had all happened. And it is there that 
our story next takes us. 

 

 



 

 

 

 

PART  II     THE SIZE OF THE EARTH 

 

 

 

 

   Nature and Nature’s laws lay hid in  
      night; 
   God said, Let Newton be! And all 
      was light. 
 
      -Alexander Pope



4    THE MEASURE OF THINGS 

IF YOU HAD to select the least convivial scientific field trip of all time, you could certainly 
do worse than the French Royal Academy of Sciences’ Peruvian expedition of 1735. Led by a 
hydrologist named Pierre Bouguer and a soldier-mathematician named Charles Marie de La 
Condamine, it was a party of scientists and adventurers who traveled to Peru with the purpose 
of triangulating distances through the Andes. 

    At the time people had lately become infected with a powerful desire to understand the 
Earth—to determine how old it was, and how massive, where it hung in space, and how it had 
come to be. The French party’s goal was to help settle the question of the circumference of 
the planet by measuring the length of one degree of meridian (or 1/360 of the distance around 
the planet) along a line reaching from Yarouqui, near Quito, to just beyond Cuenca in what is 
now Ecuador, a distance of about two hundred miles.1  

Almost at once things began to go wrong, sometimes spectacularly so. In Quito, the visitors 
somehow provoked the locals and were chased out of town by a mob armed with stones. Soon 
after, the expedition’s doctor was murdered in a misunderstanding over a woman. The 
botanist became deranged. Others died of fevers and falls. The third most senior member of 
the party, a man named Pierre Godin, ran off with a thirteen-year-old girl and could not be 
induced to return. 

At one point the group had to suspend work for eight months while La Condamine rode off to 
Lima to sort out a problem with their permits. Eventually he and Bouguer stopped speaking 
and refused to work together. Everywhere the dwindling party went it was met with the 
deepest suspicions from officials who found it difficult to believe that a group of French 
scientists would travel halfway around the world to measure the world. That made no sense at 
all. Two and a half centuries later it still seems a reasonable question. Why didn’t the French 
make their measurements in France and save themselves all the bother and discomfort of their 
Andean adventure? 

The answer lies partly with the fact that eighteenth-century scientists, the French in particular, 
seldom did things simply if an absurdly demanding alternative was available, and partly with 
a practical problem that had first arisen with the English astronomer Edmond Halley many 
years before—long before Bouguer and La Condamine dreamed of going to South America, 
much less had a reason for doing so. 

                                                 
* Triangulation, their chosen method, was a popular technique based on the geometric fact that if you know the 
length of one side of a triangle and the angles of two corners, you can work out all its other dimensions without 
leaving your chair. Suppose, by way of example, that you and I decided we wished to know how far it is to the 
Moon. Using triangulation, the first thing we must do is put some distance between us, so let's say for argument 
that you stay in Paris and I go to Moscow and we both look at the Moon at the same time. Now if you imagine a 
line connecting the three principals of this exercise-that is, you and I and the Moon-it forms a triangle. Measure 
the length of the baseline between you and me and the angles of our two corners and the rest can be simply 
calculated. (Because the interior angles of a triangle always add up to 180 degrees, if you know the sum of two 
of the angles you can instantly calculate the third; and knowing the precise shape of a triangle and the length of 
one side tells you the lengths of the other sides.) This was in fact the method use by a Greek astronomer, 
Hipparchus of Nicaea, in 150 B.C. to work out the Moon's distance from Earth. At ground level, the principles of 
triangulation are the same, except that the triangles don't reach into space but rather are laid side to side on a 
map. In measuring a degree of meridian, the surveyors would create a sort of chain of triangles marching across 
the landscape. 



    Halley was an exceptional figure. In the course of a long and productive career, he was a 
sea captain, a cartographer, a professor of geometry at the University of Oxford, deputy 
controller of the Royal Mint, astronomer royal, and inventor of the deep-sea diving bell. He 
wrote authoritatively on magnetism, tides, and the motions of the planets, and fondly on the 
effects of opium. He invented the weather map and actuarial table, proposed methods for 
working out the age of the Earth and its distance from the Sun, even devised a practical 
method for keeping fish fresh out of season. The one thing he didn’t do, interestingly enough, 
was discover the comet that bears his name. He merely recognized that the comet he saw in 
1682 was the same one that had been seen by others in 1456, 1531, and 1607. It didn’t 
become Halley’s comet until 1758, some sixteen years after his death. 

    For all his achievements, however, Halley’s greatest contribution to human knowledge may 
simply have been to take part in a modest scientific wager with two other worthies of his day: 
Robert Hooke, who is perhaps best remembered now as the first person to describe a cell, and 
the great and stately Sir Christopher Wren, who was actually an astronomer first and architect 
second, though that is not often generally remembered now. In 1683, Halley, Hooke, and 
Wren were dining in London when the conversation turned to the motions of celestial objects. 
It was known that planets were inclined to orbit in a particular kind of oval known as an 
ellipse—“a very specific and precise curve,” to quote Richard Feynman—but it wasn’t 
understood why. Wren generously offered a prize worth forty shillings (equivalent to a couple 
of weeks’ pay) to whichever of the men could provide a solution. 

    Hooke, who was well known for taking credit for ideas that weren’t necessarily his own, 
claimed that he had solved the problem already but declined now to share it on the interesting 
and inventive grounds that it would rob others of the satisfaction of discovering the answer for 
themselves. He would instead “conceal it for some time, that others might know how to value 
it.” If he thought any more on the matter, he left no evidence of it. Halley, however, became 
consumed with finding the answer, to the point that the following year he traveled to 
Cambridge and boldly called upon the university’s Lucasian Professor of Mathematics, Isaac 
Newton, in the hope that he could help. 

    Newton was a decidedly odd figure—brilliant beyond measure, but solitary, joyless, prickly 
to the point of paranoia, famously distracted (upon swinging his feet out of bed in the morning 
he would reportedly sometimes sit for hours, immobilized by the sudden rush of thoughts to 
his head), and capable of the most riveting strangeness. He built his own laboratory, the first 
at Cambridge, but then engaged in the most bizarre experiments. Once he inserted a bodkin—
a long needle of the sort used for sewing leather—into his eye socket and rubbed it around 
“betwixt my eye and the bone as near to [the] backside of my eye as I could” just to see what 
would happen. What happened, miraculously, was nothing—at least nothing lasting. On 
another occasion, he stared at the Sun for as long as he could bear, to determine what effect it 
would have upon his vision. Again he escaped lasting damage, though he had to spend some 
days in a darkened room before his eyes forgave him. 

    Set atop these odd beliefs and quirky traits, however, was the mind of a supreme genius—
though even when working in conventional channels he often showed a tendency to 
peculiarity. As a student, frustrated by the limitations of conventional mathematics, he 
invented an entirely new form, the calculus, but then told no one about it for twenty-seven 
years. In like manner, he did work in optics that transformed our understanding of light and 
laid the foundation for the science of spectroscopy, and again chose not to share the results for 
three decades. 



    For all his brilliance, real science accounted for only a part of his interests. At least half his 
working life was given over to alchemy and wayward religious pursuits. These were not mere 
dabblings but wholehearted devotions. He was a secret adherent of a dangerously heretical 
sect called Arianism, whose principal tenet was the belief that there had been no Holy Trinity 
(slightly ironic since Newton’s college at Cambridge was Trinity). He spent endless hours 
studying the floor plan of the lost Temple of King Solomon in Jerusalem (teaching himself 
Hebrew in the process, the better to scan original texts) in the belief that it held mathematical 
clues to the dates of the second coming of Christ and the end of the world. His attachment to 
alchemy was no less ardent. In 1936, the economist John Maynard Keynes bought a trunk of 
Newton’s papers at auction and discovered with astonishment that they were overwhelmingly 
preoccupied not with optics or planetary motions, but with a single-minded quest to turn base 
metals into precious ones. An analysis of a strand of Newton’s hair in the 1970s found it 
contained mercury—an element of interest to alchemists, hatters, and thermometer-makers 
but almost no one else—at a concentration some forty times the natural level. It is perhaps 
little wonder that he had trouble remembering to rise in the morning. 

    Quite what Halley expected to get from him when he made his unannounced visit in August 
1684 we can only guess. But thanks to the later account of a Newton confidant, Abraham 
DeMoivre, we do have a record of one of science’s most historic encounters: 

 

 In 1684 Dr Halley came to visit at Cambridge [and] after they had some time 
together the Drasked him what he thought the curve would be that would be 
described by the Planets supposing the force of attraction toward the Sun to be 
reciprocal to the square of their distance from it. 

 

This was a reference to a piece of mathematics known as the inverse square law, which Halley 
was convinced lay at the heart of the explanation, though he wasn’t sure exactly how. 

 

 Sr Isaac replied immediately that it would be an [ellipse]. The Doctor, struck with 
joy & amazement, asked him how he knew it. ‘Why,’ saith he, ‘I have calculated 
it,’ whereupon DrHalley asked him for his calculation without farther delay, 
SrIsaac looked among his papers but could not find it. 

 

    This was astounding—like someone saying he had found a cure for cancer but couldn’t 
remember where he had put the formula. Pressed by Halley, Newton agreed to redo the 
calculations and produce a paper. He did as promised, but then did much more. He retired for 
two years of intensive reflection and scribbling, and at length produced his masterwork: the 
Philosophiae Naturalis Principia Mathematica or Mathematical Principles of Natural 
Philosophy, better known as the Principia . 

    Once in a great while, a few times in history, a human mind produces an observation so 
acute and unexpected that people can’t quite decide which is the more amazing—the fact or 
the thinking of it. Principia was one of those moments. It made Newton instantly famous. For 



the rest of his life he would be draped with plaudits and honors, becoming, among much else, 
the first person in Britain knighted for scientific achievement. Even the great German 
mathematician Gottfried von Leibniz, with whom Newton had a long, bitter fight over priority 
for the invention of the calculus, thought his contributions to mathematics equal to all the 
accumulated work that had preceded him. “Nearer the gods no mortal may approach,” wrote 
Halley in a sentiment that was endlessly echoed by his contemporaries and by many others 
since. 

    Although the Principia has been called “one of the most inaccessible books ever written” 
(Newton intentionally made it difficult so that he wouldn’t be pestered by mathematical 
“smatterers,” as he called them), it was a beacon to those who could follow it. It not only 
explained mathematically the orbits of heavenly bodies, but also identified the attractive force 
that got them moving in the first place—gravity. Suddenly every motion in the universe made 
sense. 

    At Principia ’s heart were Newton’s three laws of motion (which state, very baldly, that a 
thing moves in the direction in which it is pushed; that it will keep moving in a straight line 
until some other force acts to slow or deflect it; and that every action has an opposite and 
equal reaction) and his universal law of gravitation. This states that every object in the 
universe exerts a tug on every other. It may not seem like it, but as you sit here now you are 
pulling everything around you—walls, ceiling, lamp, pet cat—toward you with your own little 
(indeed, very little) gravitational field. And these things are also pulling on you. It was 
Newton who realized that the pull of any two objects is, to quote Feynman again, 
“proportional to the mass of each and varies inversely as the square of the distance between 
them.” Put another way, if you double the distance between two objects, the attraction 
between them becomes four times weaker. This can be expressed with the formula 

F = Gmm 

R2 

which is of course way beyond anything that most of us could make practical use of, but at 
least we can appreciate that it is elegantly compact. A couple of brief multiplications, a simple 
division, and, bingo, you know your gravitational position wherever you go. It was the first 
really universal law of nature ever propounded by a human mind, which is why Newton is 
regarded with such universal esteem. 

    Principia’s production was not without drama. To Halley’s horror, just as work was 
nearing completion Newton and Hooke fell into dispute over the priority for the inverse 
square law and Newton refused to release the crucial third volume, without which the first 
two made little sense. Only with some frantic shuttle diplomacy and the most liberal 
applications of flattery did Halley manage finally to extract the concluding volume from the 
erratic professor. 

    Halley’s traumas were not yet quite over. The Royal Society had promised to publish the 
work, but now pulled out, citing financial embarrassment. The year before the society had 
backed a costly flop called The History of Fishes , and they now suspected that the market for 
a book on mathematical principles would be less than clamorous. Halley, whose means were 
not great, paid for the book’s publication out of his own pocket. Newton, as was his custom, 
contributed nothing. To make matters worse, Halley at this time had just accepted a position 
as the society’s clerk, and he was informed that the society could no longer afford to provide 



him with a promised salary of £50 per annum. He was to be paid instead in copies of The 
History of Fishes . 

  

    Newton’s laws explained so many things—the slosh and roll of ocean tides, the motions of 
planets, why cannonballs trace a particular trajectory before thudding back to Earth, why we 
aren’t flung into space as the planet spins beneath us at hundreds of miles an hour2—that it 
took a while for all their implications to seep in. But one revelation became almost 
immediately controversial. 

    This was the suggestion that the Earth is not quite round. According to Newton’s theory, 
the centrifugal force of the Earth’s spin should result in a slight flattening at the poles and a 
bulging at the equator, which would make the planet slightly oblate. That meant that the 
length of a degree wouldn’t be the same in Italy as it was in Scotland. Specifically, the length 
would shorten as you moved away from the poles. This was not good news for those people 
whose measurements of the Earth were based on the assumption that the Earth was a perfect 
sphere, which was everyone. 

    For half a century people had been trying to work out the size of the Earth, mostly by 
making very exacting measurements. One of the first such attempts was by an English 
mathematician named Richard Norwood. As a young man Norwood had traveled to Bermuda 
with a diving bell modeled on Halley’s device, intending to make a fortune scooping pearls 
from the seabed. The scheme failed because there were no pearls and anyway Norwood’s bell 
didn’t work, but Norwood was not one to waste an experience. In the early seventeenth 
century Bermuda was well known among ships’ captains for being hard to locate. The 
problem was that the ocean was big, Bermuda small, and the navigational tools for dealing 
with this disparity hopelessly inadequate. There wasn’t even yet an agreed length for a 
nautical mile. Over the breadth of an ocean the smallest miscalculations would become 
magnified so that ships often missed Bermuda-sized targets by dismaying margins. Norwood, 
whose first love was trigonometry and thus angles, decided to bring a little mathematical rigor 
to navigation and to that end he determined to calculate the length of a degree. 

    Starting with his back against the Tower of London, Norwood spent two devoted years 
marching 208 miles north to York, repeatedly stretching and measuring a length of chain as 
he went, all the while making the most meticulous adjustments for the rise and fall of the land 
and the meanderings of the road. The final step was to measure the angle of the Sun at York at 
the same time of day and on the same day of the year as he had made his first measurement in 
London. From this, he reasoned he could determine the length of one degree of the Earth’s 
meridian and thus calculate the distance around the whole. It was an almost ludicrously 
ambitious undertaking—a mistake of the slightest fraction of a degree would throw the whole 
thing out by miles—but in fact, as Norwood proudly declaimed, he was accurate to “within a 
scantling”—or, more precisely, to within about six hundred yards. In metric terms, his figure 
worked out at 110.72 kilometers per degree of arc. 

    In 1637, Norwood’s masterwork of navigation, The Seaman’s Practice , was published and 
found an immediate following. It went through seventeen editions and was still in print 
twenty-five years after his death. Norwood returned to Bermuda with his family, becoming a 
                                                 
2 How fast you are spinning depends on where you are. The speed of the Earth’s spin varies from a little over 
1,000 miles an hour at the equator to 0 at the poles. 
 



successful planter and devoting his leisure hours to his first love, trigonometry. He survived 
there for thirty-eight years and it would be pleasing to report that he passed this span in 
happiness and adulation. In fact, he didn’t. On the crossing from England, his two young sons 
were placed in a cabin with the Reverend Nathaniel White, and somehow so successfully 
traumatized the young vicar that he devoted much of the rest of his career to persecuting 
Norwood in any small way he could think of. 

    Norwood’s two daughters brought their father additional pain by making poor marriages. 
One of the husbands, possibly incited by the vicar, continually laid small charges against 
Norwood in court, causing him much exasperation and necessitating repeated trips across 
Bermuda to defend himself. Finally in the 1650s witch trials came to Bermuda and Norwood 
spent his final years in severe unease that his papers on trigonometry, with their arcane 
symbols, would be taken as communications with the devil and that he would be treated to a 
dreadful execution. So little is known of Norwood that it may in fact be that he deserved his 
unhappy declining years. What is certainly true is that he got them. 

    Meanwhile, the momentum for determining the Earth’s circumference passed to France. 
There, the astronomer Jean Picard devised an impressively complicated method of 
triangulation involving quadrants, pendulum clocks, zenith sectors, and telescopes (for 
observing the motions of the moons of Jupiter). After two years of trundling and triangulating 
his way across France, in 1669 he announced a more accurate measure of 110.46 kilometers 
for one degree of arc. This was a great source of pride for the French, but it was predicated on 
the assumption that the Earth was a perfect sphere—which Newton now said it was not. 

  

    To complicate matters, after Picard’s death the father-and-son team of Giovanni and 
Jacques Cassini repeated Picard’s experiments over a larger area and came up with results that 
suggested that the Earth was fatter not at the equator but at the poles—that Newton, in other 
words, was exactly wrong. It was this that prompted the Academy of Sciences to dispatch 
Bouguer and La Condamine to South America to take new measurements. 

    They chose the Andes because they needed to measure near the equator, to determine if 
there really was a difference in sphericity there, and because they reasoned that mountains 
would give them good sightlines. In fact, the mountains of Peru were so constantly lost in 
cloud that the team often had to wait weeks for an hour’s clear surveying. On top of that, they 
had selected one of the most nearly impossible terrains on Earth. Peruvians refer to their 
landscape as muy accidentado —“much accidented”—and this it most certainly is. The 
French had not only to scale some of the world’s most challenging mountains—mountains 
that defeated even their mules—but to reach the mountains they had to ford wild rivers, hack 
their way through jungles, and cross miles of high, stony desert, nearly all of it uncharted and 
far from any source of supplies. But Bouguer and La Condamine were nothing if not 
tenacious, and they stuck to the task for nine and a half long, grim, sun-blistered years. 
Shortly before concluding the project, they received word that a second French team, taking 
measurements in northern Scandinavia (and facing notable discomforts of their own, from 
squelching bogs to dangerous ice floes), had found that a degree was in fact longer near the 
poles, as Newton had promised. The Earth was forty-three kilometers stouter when measured 
equatorially than when measured from top to bottom around the poles. 

    Bouguer and La Condamine thus had spent nearly a decade working toward a result they 
didn’t wish to find only to learn now that they weren’t even the first to find it. Listlessly, they 



completed their survey, which confirmed that the first French team was correct. Then, still not 
speaking, they returned to the coast and took separate ships home. 

  

    Something else conjectured by Newton in the Principia was that a plumb bob hung near a 
mountain would incline very slightly toward the mountain, affected by the mountain’s 
gravitational mass as well as by the Earth’s. This was more than a curious fact. If you 
measured the deflection accurately and worked out the mass of the mountain, you could 
calculate the universal gravitational constant—that is, the basic value of gravity, known as 
G—and along with it the mass of the Earth. 

    Bouguer and La Condamine had tried this on Peru’s Mount Chimborazo, but had been 
defeated by both the technical difficulties and their own squabbling, and so the notion lay 
dormant for another thirty years until resurrected in England by Nevil Maskelyne, the 
astronomer royal. In Dava Sobel’s popular book Longitude, Maskelyne is presented as a ninny 
and villain for failing to appreciate the brilliance of the clockmaker John Harrison, and this 
may be so, but we are indebted to him in other ways not mentioned in her book, not least for 
his successful scheme to weigh the Earth. Maskelyne realized that the nub of the problem lay 
with finding a mountain of sufficiently regular shape to judge its mass. 

    At his urging, the Royal Society agreed to engage a reliable figure to tour the British Isles 
to see if such a mountain could be found. Maskelyne knew just such a person—the 
astronomer and surveyor Charles Mason. Maskelyne and Mason had become friends eleven 
years earlier while engaged in a project to measure an astronomical event of great importance: 
the passage of the planet Venus across the face of the Sun. The tireless Edmond Halley had 
suggested years before that if you measured one of these passages from selected points on the 
Earth, you could use the principles of triangulation to work out the distance to the Sun, and 
from that calibrate the distances to all the other bodies in the solar system. 

    Unfortunately, transits of Venus, as they are known, are an irregular occurrence. They 
come in pairs eight years apart, but then are absent for a century or more, and there were none 
in Halley’s lifetime.3 But the idea simmered and when the next transit came due in 1761, 
nearly two decades after Halley’s death, the scientific world was ready—indeed, more ready 
than it had been for an astronomical event before. 

    With the instinct for ordeal that characterized the age, scientists set off for more than a 
hundred locations around the globe—to Siberia, China, South Africa, Indonesia, and the 
woods of Wisconsin, among many others. France dispatched thirty-two observers, Britain 
eighteen more, and still others set out from Sweden, Russia, Italy, Germany, Ireland, and 
elsewhere. 

    It was history’s first cooperative international scientific venture, and almost everywhere it 
ran into problems. Many observers were waylaid by war, sickness, or shipwreck. Others made 
their destinations but opened their crates to find equipment broken or warped by tropical heat. 
Once again the French seemed fated to provide the most memorably unlucky participants. 
Jean Chappe spent months traveling to Siberia by coach, boat, and sleigh, nursing his delicate 
instruments over every perilous bump, only to find the last vital stretch blocked by swollen 
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rivers, the result of unusually heavy spring rains, which the locals were swift to blame on him 
after they saw him pointing strange instruments at the sky. Chappe managed to escape with 
his life, but with no useful measurements. 

    Unluckier still was Guillaume Le Gentil, whose experiences are wonderfully summarized 
by Timothy Ferris in Coming of Age in the Milky Way . Le Gentil set off from France a year 
ahead of time to observe the transit from India, but various setbacks left him still at sea on the 
day of the transit—just about the worst place to be since steady measurements were 
impossible on a pitching ship. 

    Undaunted, Le Gentil continued on to India to await the next transit in 1769. With eight 
years to prepare, he erected a first-rate viewing station, tested and retested his instruments, 
and had everything in a state of perfect readiness. On the morning of the second transit, June 
4, 1769, he awoke to a fine day, but, just as Venus began its pass, a cloud slid in front of the 
Sun and remained there for almost exactly the duration of the transit: three hours, fourteen 
minutes, and seven seconds. 

    Stoically, Le Gentil packed up his instruments and set off for the nearest port, but en route 
he contracted dysentery and was laid up for nearly a year. Still weakened, he finally made it 
onto a ship. It was nearly wrecked in a hurricane off the African coast. When at last he 
reached home, eleven and a half years after setting off, and having achieved nothing, he 
discovered that his relatives had had him declared dead in his absence and had 
enthusiastically plundered his estate. 

  

    In comparison, the disappointments experienced by Britain’s eighteen scattered observers 
were mild. Mason found himself paired with a young surveyor named Jeremiah Dixon and 
apparently they got along well, for they formed a lasting partnership. Their instructions were 
to travel to Sumatra and chart the transit there, but after just one night at sea their ship was 
attacked by a French frigate. (Although scientists were in an internationally cooperative 
mood, nations weren’t.) Mason and Dixon sent a note to the Royal Society observing that it 
seemed awfully dangerous on the high seas and wondering if perhaps the whole thing 
oughtn’t to be called off. In reply they received a swift and chilly rebuke, noting that they had 
already been paid, that the nation and scientific community were counting on them, and that 
their failure to proceed would result in the irretrievable loss of their reputations. Chastened, 
they sailed on, but en route word reached them that Sumatra had fallen to the French and so 
they observed the transit inconclusively from the Cape of Good Hope. On the way home they 
stopped on the lonely Atlantic outcrop of St. Helena, where they met Maskelyne, whose 
observations had been thwarted by cloud cover. Mason and Maskelyne formed a solid 
friendship and spent several happy, and possibly even mildly useful, weeks charting tidal 
flows. 

    Soon afterward, Maskelyne returned to England where he became astronomer royal, and 
Mason and Dixon—now evidently more seasoned—set off for four long and often perilous 
years surveying their way through 244 miles of dangerous American wilderness to settle a 
boundary dispute between the estates of William Penn and Lord Baltimore and their 
respective colonies of Pennsylvania and Maryland. The result was the famous Mason and 
Dixon line, which later took on symbolic importance as the dividing line between the slave 
and free states. (Although the line was their principal task, they also contributed several 
astronomical surveys, including one of the century’s most accurate measurements of a degree 



of meridian—an achievement that brought them far more acclaim in England than the settling 
of a boundary dispute between spoiled aristocrats.) 

    Back in Europe, Maskelyne and his counterparts in Germany and France were forced to the 
conclusion that the transit measurements of 1761 were essentially a failure. One of the 
problems, ironically, was that there were too many observations, which when brought 
together often proved contradictory and impossible to resolve. The successful charting of a 
Venusian transit fell instead to a little-known Yorkshire-born sea captain named James Cook, 
who watched the 1769 transit from a sunny hilltop in Tahiti, and then went on to chart and 
claim Australia for the British crown. Upon his return there was now enough information for 
the French astronomer Joseph Lalande to calculate that the mean distance from the Earth to 
the Sun was a little over 150 million kilometers. (Two further transits in the nineteenth 
century allowed astronomers to put the figure at 149.59 million kilometers, where it has 
remained ever since. The precise distance, we now know, is 149.597870691 million 
kilometers.) The Earth at last had a position in space. 

  

    As for Mason and Dixon, they returned to England as scientific heroes and, for reasons 
unknown, dissolved their partnership. Considering the frequency with which they turn up at 
seminal events in eighteenth-century science, remarkably little is known about either man. No 
likenesses exist and few written references. Of Dixon the Dictionary of National Biography 
notes intriguingly that he was “said to have been born in a coal mine,” but then leaves it to the 
reader’s imagination to supply a plausible explanatory circumstance, and adds that he died at 
Durham in 1777. Apart from his name and long association with Mason, nothing more is 
known. 

    Mason is only slightly less shadowy. We know that in 1772, at Maskelyne’s behest, he 
accepted the commission to find a suitable mountain for the gravitational deflection 
experiment, at length reporting back that the mountain they needed was in the central Scottish 
Highlands, just above Loch Tay, and was called Schiehallion. Nothing, however, would 
induce him to spend a summer surveying it. He never returned to the field again. His next 
known movement was in 1786 when, abruptly and mysteriously, he turned up in Philadelphia 
with his wife and eight children, apparently on the verge of destitution. He had not been back 
to America since completing his survey there eighteen years earlier and had no known reason 
for being there, or any friends or patrons to greet him. A few weeks later he was dead. 

  

    With Mason refusing to survey the mountain, the job fell to Maskelyne. So for four months 
in the summer of 1774, Maskelyne lived in a tent in a remote Scottish glen and spent his days 
directing a team of surveyors, who took hundreds of measurements from every possible 
position. To find the mass of the mountain from all these numbers required a great deal of 
tedious calculating, for which a mathematician named Charles Hutton was engaged. The 
surveyors had covered a map with scores of figures, each marking an elevation at some point 
on or around the mountain. It was essentially just a confusing mass of numbers, but Hutton 
noticed that if he used a pencil to connect points of equal height, it all became much more 
orderly. Indeed, one could instantly get a sense of the overall shape and slope of the mountain. 
He had invented contour lines. 



    Extrapolating from his Schiehallion measurements, Hutton calculated the mass of the Earth 
at 5,000 million million tons, from which could reasonably be deduced the masses of all the 
other major bodies in the solar system, including the Sun. So from this one experiment we 
learned the masses of the Earth, the Sun, the Moon, the other planets and their moons, and got 
contour lines into the bargain—not bad for a summer’s work. 

    Not everyone was satisfied with the results, however. The shortcoming of the Schiehallion 
experiment was that it was not possible to get a truly accurate figure without knowing the 
actual density of the mountain. For convenience, Hutton had assumed that the mountain had 
the same density as ordinary stone, about 2.5 times that of water, but this was little more than 
an educated guess. 

    One improbable-seeming person who turned his mind to the matter was a country parson 
named John Michell, who resided in the lonely Yorkshire village of Thornhill. Despite his 
remote and comparatively humble situation, Michell was one of the great scientific thinkers of 
the eighteenth century and much esteemed for it. 

    Among a great deal else, he perceived the wavelike nature of earthquakes, conducted much 
original research into magnetism and gravity, and, quite extraordinarily, envisioned the 
possibility of black holes two hundred years before anyone else—a leap of intuitive deduction 
that not even Newton could make. When the German-born musician William Herschel 
decided his real interest in life was astronomy, it was Michell to whom he turned for 
instruction in making telescopes, a kindness for which planetary science has been in his debt 
ever since.4  

    But of all that Michell accomplished, nothing was more ingenious or had greater impact 
than a machine he designed and built for measuring the mass of the Earth. Unfortunately, he 
died before he could conduct the experiments and both the idea and the necessary equipment 
were passed on to a brilliant but magnificently retiring London scientist named Henry 
Cavendish. 

    Cavendish is a book in himself. Born into a life of sumptuous privilege—his grandfathers 
were dukes, respectively, of Devonshire and Kent—he was the most gifted English scientist 
of his age, but also the strangest. He suffered, in the words of one of his few biographers, 
from shyness to a “degree bordering on disease.” Any human contact was for him a source of 
the deepest discomfort. 

Once he opened his door to find an Austrian admirer, freshly arrived from Vienna, on the 
front step. Excitedly the Austrian began to babble out praise. For a few moments Cavendish 
received the compliments as if they were blows from a blunt object and then, unable to take 
any more, fled down the path and out the gate, leaving the front door wide open. It was some 
hours before he could be coaxed back to the property. Even his housekeeper communicated 
with him by letter. 

Although he did sometimes venture into society—he was particularly devoted to the weekly 
scientific soirées of the great naturalist Sir Joseph Banks—it was always made clear to the 
other guests that Cavendish was on no account to be approached or even looked at. Those 
who sought his views were advised to wander into his vicinity as if by accident and to “talk as 
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after the British monarch, but was overruled. Instead it became Uranus. 
 



it were into vacancy.” If their remarks were scientifically worthy they might receive a 
mumbled reply, but more often than not they would hear a peeved squeak (his voice appears 
to have been high pitched) and turn to find an actual vacancy and the sight of Cavendish 
fleeing for a more peaceful corner. 

    His wealth and solitary inclinations allowed him to turn his house in Clapham into a large 
laboratory where he could range undisturbed through every corner of the physical sciences—
electricity, heat, gravity, gases, anything to do with the composition of matter. The second 
half of the eighteenth century was a time when people of a scientific bent grew intensely 
interested in the physical properties of fundamental things—gases and electricity in 
particular—and began seeing what they could do with them, often with more enthusiasm than 
sense. In America, Benjamin Franklin famously risked his life by flying a kite in an electrical 
storm. In France, a chemist named Pilatre de Rozier tested the flammability of hydrogen by 
gulping a mouthful and blowing across an open flame, proving at a stroke that hydrogen is 
indeed explosively combustible and that eyebrows are not necessarily a permanent feature of 
one’s face. Cavendish, for his part, conducted experiments in which he subjected himself to 
graduated jolts of electrical current, diligently noting the increasing levels of agony until he 
could keep hold of his quill, and sometimes his consciousness, no longer. 

    In the course of a long life Cavendish made a string of signal discoveries—among much 
else he was the first person to isolate hydrogen and the first to combine hydrogen and oxygen 
to form water—but almost nothing he did was entirely divorced from strangeness. To the 
continuing exasperation of his fellow scientists, he often alluded in published work to the 
results of contingent experiments that he had not told anyone about. In his secretiveness he 
didn’t merely resemble Newton, but actively exceeded him. His experiments with electrical 
conductivity were a century ahead of their time, but unfortunately remained undiscovered 
until that century had passed. Indeed the greater part of what he did wasn’t known until the 
late nineteenth century when the Cambridge physicist James Clerk Maxwell took on the task 
of editing Cavendish’s papers, by which time credit had nearly always been given to others. 

    Among much else, and without telling anyone, Cavendish discovered or anticipated the law 
of the conservation of energy, Ohm’s law, Dalton’s Law of Partial Pressures, Richter’s Law 
of Reciprocal Proportions, Charles’s Law of Gases, and the principles of electrical 
conductivity. That’s just some of it. According to the science historian J. G. Crowther, he also 
foreshadowed “the work of Kelvin and G. H. Darwin on the effect of tidal friction on slowing 
the rotation of the earth, and Larmor’s discovery, published in 1915, on the effect of local 
atmospheric cooling . . . the work of Pickering on freezing mixtures, and some of the work of 
Rooseboom on heterogeneous equilibria.” Finally, he left clues that led directly to the 
discovery of the group of elements known as the noble gases, some of which are so elusive 
that the last of them wasn’t found until 1962. But our interest here is in Cavendish’s last 
known experiment when in the late summer of 1797, at the age of sixty-seven, he turned his 
attention to the crates of equipment that had been left to him—evidently out of simple 
scientific respect—by John Michell. 

    When assembled, Michell’s apparatus looked like nothing so much as an eighteenth-
century version of a Nautilus weight-training machine. It incorporated weights, 
counterweights, pendulums, shafts, and torsion wires. At the heart of the machine were two 
350-pound lead balls, which were suspended beside two smaller spheres. The idea was to 
measure the gravitational deflection of the smaller spheres by the larger ones, which would 



allow the first measurement of the elusive force known as the gravitational constant, and from 
which the weight (strictly speaking, the mass)5 of the Earth could be deduced. 

    Because gravity holds planets in orbit and makes falling objects land with a bang, we tend 
to think of it as a powerful force, but it is not really. It is only powerful in a kind of collective 
sense, when one massive object, like the Sun, holds on to another massive object, like the 
Earth. At an elemental level gravity is extraordinarily unrobust. Each time you pick up a book 
from a table or a dime from the floor you effortlessly overcome the combined gravitational 
exertion of an entire planet. What Cavendish was trying to do was measure gravity at this 
extremely featherweight level. 

    Delicacy was the key word. Not a whisper of disturbance could be allowed into the room 
containing the apparatus, so Cavendish took up a position in an adjoining room and made his 
observations with a telescope aimed through a peephole. The work was incredibly exacting 
and involved seventeen delicate, interconnected measurements, which together took nearly a 
year to complete. When at last he had finished his calculations, Cavendish announced that the 
Earth weighed a little over 13,000,000,000,000,000,000,000 pounds, or six billion trillion 
metric tons, to use the modern measure. (A metric ton is 1,000 kilograms or 2,205 pounds.) 

    Today, scientists have at their disposal machines so precise they can detect the weight of a 
single bacterium and so sensitive that readings can be disturbed by someone yawning seventy-
five feet away, but they have not significantly improved on Cavendish’s measurements of 
1797. The current best estimate for Earth’s weight is 5.9725 billion trillion metric tons, a 
difference of only about 1 percent from Cavendish’s finding. Interestingly, all of this merely 
confirmed estimates made by Newton 110 years before Cavendish without any experimental 
evidence at all. 

    So, by the late eighteenth century scientists knew very precisely the shape and dimensions 
of the Earth and its distance from the Sun and planets; and now Cavendish, without even 
leaving home, had given them its weight. So you might think that determining the age of the 
Earth would be relatively straightforward. After all, the necessary materials were literally at 
their feet. But no. Human beings would split the atom and invent television, nylon, and instant 
coffee before they could figure out the age of their own planet. 

    To understand why, we must travel north to Scotland and begin with a brilliant and genial 
man, of whom few have ever heard, who had just invented a new science called geology. 

                                                 
5 To a physicist, mass and weight are two quite different things. Your mass stays the same wherever you go, but 
your weight varies depending on how far you are from the center of some other massive object like a planet. 
Travel to the Moon and you will be much lighter but no less massive. On Earth, for all practical purposes, mass 
and weight are the same and so the terms can be treated as synonymous. at least outside the classroom. 



5    THE STONE-BREAKERS 

AT JUST THE time that Henry Cavendish was completing his experiments in London, four 
hundred miles away in Edinburgh another kind of concluding moment was about to take place 
with the death of James Hutton. This was bad news for Hutton, of course, but good news for 
science as it cleared the way for a man named John Playfair to rewrite Hutton’s work without 
fear of embarrassment. 

Hutton was by all accounts a man of the keenest insights and liveliest conversation, a delight 
in company, and without rival when it came to understanding the mysterious slow processes 
that shaped the Earth. Unfortunately, it was beyond him to set down his notions in a form that 
anyone could begin to understand. He was, as one biographer observed with an all but audible 
sigh, “almost entirely innocent of rhetorical accomplishments.” Nearly every line he penned 
was an invitation to slumber. Here he is in his 1795 masterwork, A Theory of the Earth with 
Proofs and Illustrations , discussing . . . something: 

 

 The world which we inhabit is composed of the materials, not of the earth which 
was the immediate predecessor of the present, but of the earth which, in ascending 
from the present, we consider as the third, and which had preceded the land that 
was above the surface of the sea, while our present land was yet beneath the water 
of the ocean. 

 

    Yet almost singlehandedly, and quite brilliantly, he created the science of geology and 
transformed our understanding of the Earth. Hutton was born in 1726 into a prosperous 
Scottish family, and enjoyed the sort of material comfort that allowed him to pass much of his 
life in a genially expansive round of light work and intellectual betterment. He studied 
medicine, but found it not to his liking and turned instead to farming, which he followed in a 
relaxed and scientific way on the family estate in Berwickshire. Tiring of field and flock, in 
1768 he moved to Edinburgh, where he founded a successful business producing sal 
ammoniac from coal soot, and busied himself with various scientific pursuits. Edinburgh at 
that time was a center of intellectual vigor, and Hutton luxuriated in its enriching possibilities. 
He became a leading member of a society called the Oyster Club, where he passed his 
evenings in the company of men such as the economist Adam Smith, the chemist Joseph 
Black, and the philosopher David Hume, as well as such occasional visiting sparks as 
Benjamin Franklin and James Watt. 

    In the tradition of the day, Hutton took an interest in nearly everything, from mineralogy to 
metaphysics. He conducted experiments with chemicals, investigated methods of coal mining 
and canal building, toured salt mines, speculated on the mechanisms of heredity, collected 
fossils, and propounded theories on rain, the composition of air, and the laws of motion, 
among much else. But his particular interest was geology. 

    Among the questions that attracted interest in that fanatically inquisitive age was one that 
had puzzled people for a very long time—namely, why ancient clamshells and other marine 
fossils were so often found on mountaintops. How on earth did they get there? Those who 
thought they had a solution fell into two opposing camps. One group, known as the 
Neptunists, was convinced that everything on Earth, including seashells in improbably lofty 



places, could be explained by rising and falling sea levels. They believed that mountains, 
hills, and other features were as old as the Earth itself, and were changed only when water 
sloshed over them during periods of global flooding. 

    Opposing them were the Plutonists, who noted that volcanoes and earthquakes, among 
other enlivening agents, continually changed the face of the planet but clearly owed nothing to 
wayward seas. The Plutonists also raised awkward questions about where all the water went 
when it wasn’t in flood. If there was enough of it at times to cover the Alps, then where, pray, 
was it during times of tranquility, such as now? Their belief was that the Earth was subject to 
profound internal forces as well as surface ones. However, they couldn’t convincingly explain 
how all those clamshells got up there. 

    It was while puzzling over these matters that Hutton had a series of exceptional insights. 
From looking at his own farmland, he could see that soil was created by the erosion of rocks 
and that particles of this soil were continually washed away and carried off by streams and 
rivers and redeposited elsewhere. He realized that if such a process were carried to its natural 
conclusion then Earth would eventually be worn quite smooth. Yet everywhere around him 
there were hills. Clearly there had to be some additional process, some form of renewal and 
uplift, that created new hills and mountains to keep the cycle going. The marine fossils on 
mountaintops, he decided, had not been deposited during floods, but had risen along with the 
mountains themselves. He also deduced that it was heat within the Earth that created new 
rocks and continents and thrust up mountain chains. It is not too much to say that geologists 
wouldn’t grasp the full implications of this thought for two hundred years, when finally they 
adopted plate tectonics. Above all, what Hutton’s theories suggested was that Earth processes 
required huge amounts of time, far more than anyone had ever dreamed. There were enough 
insights here to transform utterly our understanding of the Earth. 

    In 1785, Hutton worked his ideas up into a long paper, which was read at consecutive 
meetings of the Royal Society of Edinburgh. It attracted almost no notice at all. It’s not hard 
to see why. Here, in part, is how he presented it to his audience: 

 

     In the one case, the forming cause is in the body which is separated; for, after the 
body has been actuated by heat, it is by the reaction of the proper matter of the 
body, that the chasm which constitutes the vein is formed. In the other case, again, 
the cause is extrinsic in relation to the body in which the chasm is formed. There 
has been the most violent fracture and divulsion; but the cause is still to seek; and 
it appears not in the vein; for it is not every fracture and dislocation of the solid 
body of our earth, in which minerals, or the proper substances of mineral veins, 
are found. 

 

    Needless to say, almost no one in the audience had the faintest idea what he was talking 
about. Encouraged by his friends to expand his theory, in the touching hope that he might 
somehow stumble onto clarity in a more expansive format, Hutton spent the next ten years 
preparing his magnum opus, which was published in two volumes in 1795. 

    Together the two books ran to nearly a thousand pages and were, remarkably, worse than 
even his most pessimistic friends had feared. Apart from anything else, nearly half the 



completed work now consisted of quotations from French sources, still in the original French.     
A third volume was so unenticing that it wasn’t published until 1899, more than a century 
after Hutton’s death, and the fourth and concluding volume was never published at all. 
Hutton’s Theory of the Earth is a strong candidate for the least read important book in science 
(or at least would be if there weren’t so many others). Even Charles Lyell, the greatest 
geologist of the following century and a man who read everything, admitted he couldn’t get 
through it. 

    Luckily Hutton had a Boswell in the form of John Playfair, a professor of mathematics at 
the University of Edinburgh and a close friend, who could not only write silken prose but—
thanks to many years at Hutton’s elbow—actually understood what Hutton was trying to say, 
most of the time. In 1802, five years after Hutton’s death, Playfair produced a simplified 
exposition of the Huttonian principles, entitled Illustrations of the Huttonian Theory of the 
Earth. The book was gratefully received by those who took an active interest in geology, 
which in 1802 was not a large number. That, however, was about to change. And how. 

  

    In the winter of 1807, thirteen like-minded souls in London got together at the Freemasons 
Tavern at Long Acre, in Covent Garden, to form a dining club to be called the Geological 
Society. The idea was to meet once a month to swap geological notions over a glass or two of 
Madeira and a convivial dinner. The price of the meal was set at a deliberately hefty fifteen 
shillings to discourage those whose qualifications were merely cerebral. It soon became 
apparent, however, that there was a demand for something more properly institutional, with a 
permanent headquarters, where people could gather to share and discuss new findings. In 
barely a decade membership grew to four hundred—still all gentlemen, of course—and the 
Geological was threatening to eclipse the Royal as the premier scientific society in the 
country. 

    The members met twice a month from November until June, when virtually all of them 
went off to spend the summer doing fieldwork. These weren’t people with a pecuniary interest 
in minerals, you understand, or even academics for the most part, but simply gentlemen with 
the wealth and time to indulge a hobby at a more or less professional level. By 1830, there 
were 745 of them, and the world would never see the like again. 

    It is hard to imagine now, but geology excited the nineteenth century—positively gripped 
it—in a way that no science ever had before or would again. In 1839, when Roderick 
Murchison published The Silurian System, a plump and ponderous study of a type of rock 
called greywacke, it was an instant bestseller, racing through four editions, even though it cost 
eight guineas a copy and was, in true Huttonian style, unreadable. (As even a Murchison 
supporter conceded, it had “a total want of literary attractiveness.”) And when, in 1841, the 
great Charles Lyell traveled to America to give a series of lectures in Boston, sellout 
audiences of three thousand at a time packed into the Lowell Institute to hear his tranquilizing 
descriptions of marine zeolites and seismic perturbations in Campania. 

    Throughout the modern, thinking world, but especially in Britain, men of learning ventured 
into the countryside to do a little “stone-breaking,” as they called it. It was a pursuit taken 
seriously, and they tended to dress with appropriate gravity, in top hats and dark suits, except 
for the Reverend William Buckland of Oxford, whose habit it was to do his fieldwork in an 
academic gown. 



    The field attracted many extraordinary figures, not least the aforementioned Murchison, 
who spent the first thirty or so years of his life galloping after foxes, converting aeronautically 
challenged birds into puffs of drifting feathers with buckshot, and showing no mental agility 
whatever beyond that needed to read The Times or play a hand of cards. Then he discovered 
an interest in rocks and became with rather astounding swiftness a titan of geological 
thinking. 

    Then there was Dr. James Parkinson, who was also an early socialist and author of many 
provocative pamphlets with titles like “Revolution without Bloodshed.” In 1794, he was 
implicated in a faintly lunatic-sounding conspiracy called “the Pop-gun Plot,” in which it was 
planned to shoot King George III in the neck with a poisoned dart as he sat in his box at the 
theater. Parkinson was hauled before the Privy Council for questioning and came within an 
ace of being dispatched in irons to Australia before the charges against him were quietly 
dropped. Adopting a more conservative approach to life, he developed an interest in geology 
and became one of the founding members of the Geological Society and the author of an 
important geological text, Organic Remains of a Former World, which remained in print for 
half a century. He never caused trouble again. Today, however, we remember him for his 
landmark study of the affliction then called the “shaking palsy,” but known ever since as 
Parkinson’s disease. (Parkinson had one other slight claim to fame. In 1785, he became 
possibly the only person in history to win a natural history museum in a raffle. The museum, 
in London’s Leicester Square, had been founded by Sir Ashton Lever, who had driven himself 
bankrupt with his unrestrained collecting of natural wonders. Parkinson kept the museum until 
1805, when he could no longer support it and the collection was broken up and sold.) 

    Not quite as remarkable in character but more influential than all the others combined was 
Charles Lyell. Lyell was born in the year that Hutton died and only seventy miles away, in the 
village of Kinnordy. Though Scottish by birth, he grew up in the far south of England, in the 
New Forest of Hampshire, because his mother was convinced that Scots were feckless drunks. 
As was generally the pattern with nineteenth-century gentlemen scientists, Lyell came from a 
background of comfortable wealth and intellectual vigor. His father, also named Charles, had 
the unusual distinction of being a leading authority on the poet Dante and on mosses. 
(Orthotricium lyelli, which most visitors to the English countryside will at some time have sat 
on, is named for him.) From his father Lyell gained an interest in natural history, but it was at 
Oxford, where he fell under the spell of the Reverend William Buckland—he of the flowing 
gowns—that the young Lyell began his lifelong devotion to geology. 

    Buckland was a bit of a charming oddity. He had some real achievements, but he is 
remembered at least as much for his eccentricities. He was particularly noted for a menagerie 
of wild animals, some large and dangerous, that were allowed to roam through his house and 
garden, and for his desire to eat his way through every animal in creation. Depending on 
whim and availability, guests to Buckland’s house might be served baked guinea pig, mice in 
batter, roasted hedgehog, or boiled Southeast Asian sea slug. Buckland was able to find merit 
in them all, except the common garden mole, which he declared disgusting. Almost 
inevitably, he became the leading authority on coprolites—fossilized feces—and had a table 
made entirely out of his collection of specimens. 

    Even when conducting serious science his manner was generally singular. Once Mrs. 
Buckland found herself being shaken awake in the middle of the night, her husband crying in 
excitement: “My dear, I believe that Cheirotherium ’s footsteps are undoubtedly testudinal.” 
Together they hurried to the kitchen in their nightclothes. Mrs. Buckland made a flour paste, 
which she spread across the table, while the Reverend Buckland fetched the family tortoise. 



Plunking it onto the paste, they goaded it forward and discovered to their delight that its 
footprints did indeed match those of the fossil Buckland had been studying. Charles Darwin 
thought Buckland a buffoon—that was the word he used—but Lyell appeared to find him 
inspiring and liked him well enough to go touring with him in Scotland in 1824. It was soon 
after this trip that Lyell decided to abandon a career in law and devote himself to geology full-
time. 

    Lyell was extremely shortsighted and went through most of his life with a pained squint, 
which gave him a troubled air. (Eventually he would lose his sight altogether.) His other slight 
peculiarity was the habit, when distracted by thought, of taking up improbable positions on 
furniture—lying across two chairs at once or “resting his head on the seat of a chair, while 
standing up” (to quote his friend Darwin). Often when lost in thought he would slink so low 
in a chair that his buttocks would all but touch the floor. Lyell’s only real job in life was as 
professor of geology at King’s College in London from 1831 to 1833. It was around this time 
that he produced The Principles of Geology, published in three volumes between 1830 and 
1833, which in many ways consolidated and elaborated upon the thoughts first voiced by 
Hutton a generation earlier. (Although Lyell never read Hutton in the original, he was a keen 
student of Playfair’s reworked version.) 

    Between Hutton’s day and Lyell’s there arose a new geological controversy, which largely 
superseded, but is often confused with, the old Neptunian–Plutonian dispute. The new battle 
became an argument between catastrophism and uniformitarianism—unattractive terms for an 
important and very long-running dispute. Catastrophists, as you might expect from the name, 
believed that the Earth was shaped by abrupt cataclysmic events—floods principally, which is 
why catastrophism and neptunism are often wrongly bundled together. Catastrophism was 
particularly comforting to clerics like Buckland because it allowed them to incorporate the 
biblical flood of Noah into serious scientific discussions. Uniformitarians by contrast believed 
that changes on Earth were gradual and that nearly all Earth processes happened slowly, over 
immense spans of time. Hutton was much more the father of the notion than Lyell, but it was 
Lyell most people read, and so he became in most people’s minds, then and now, the father of 
modern geological thought. 

    Lyell believed that the Earth’s shifts were uniform and steady—that everything that had 
ever happened in the past could be explained by events still going on today. Lyell and his 
adherents didn’t just disdain catastrophism, they detested it. Catastrophists believed that 
extinctions were part of a series in which animals were repeatedly wiped out and replaced 
with new sets—a belief that the naturalist T. H. Huxley mockingly likened to “a succession of 
rubbers of whist, at the end of which the players upset the table and called for a new pack.” It 
was too convenient a way to explain the unknown. “Never was there a dogma more calculated 
to foster indolence, and to blunt the keen edge of curiosity,” sniffed Lyell. 

    Lyell’s oversights were not inconsiderable. He failed to explain convincingly how 
mountain ranges were formed and overlooked glaciers as an agent of change. He refused to 
accept Louis Agassiz’s idea of ice ages—“the refrigeration of the globe,” as he dismissively 
termed it—and was confident that mammals “would be found in the oldest fossiliferous 
beds.” He rejected the notion that animals and plants suffered sudden annihilations, and 
believed that all the principal animal groups—mammals, reptiles, fish, and so on—had 
coexisted since the dawn of time. On all of these he would ultimately be proved wrong. 

    Yet it would be nearly impossible to overstate Lyell’s influence. The Principles of Geology 
went through twelve editions in Lyell’s lifetime and contained notions that shaped geological 



thinking far into the twentieth century. Darwin took a first edition with him on theBeagle 
voyage and wrote afterward that “the great merit of the Principles was that it altered the 
whole tone of one’s mind, and therefore that, when seeing a thing never seen by Lyell, one yet 
saw it partially through his eyes.” In short, he thought him nearly a god, as did many of his 
generation. It is a testament to the strength of Lyell’s sway that in the 1980s when geologists 
had to abandon just a part of it to accommodate the impact theory of extinctions, it nearly 
killed them. But that is another chapter. 

    Meanwhile, geology had a great deal of sorting out to do, and not all of it went smoothly. 
From the outset geologists tried to categorize rocks by the periods in which they were laid 
down, but there were often bitter disagreements about where to put the dividing lines—none 
more so than a long-running debate that became known as the Great Devonian Controversy. 
The issue arose when the Reverend Adam Sedgwick of Cambridge claimed for the Cambrian 
period a layer of rock that Roderick Murchison believed belonged rightly to the Silurian. The 
dispute raged for years and grew extremely heated. “De la Beche is a dirty dog,” Murchison 
wrote to a friend in a typical outburst. 

    Some sense of the strength of feeling can be gained by glancing through the chapter titles 
of Martin J. S. Rudwick’s excellent and somber account of the issue, The Great Devonian 
Controversy. These begin innocuously enough with headings such as “Arenas of Gentlemanly 
Debate” and “Unraveling the Greywacke,” but then proceed on to “The Greywacke Defended 
and Attacked,” “Reproofs and Recriminations,” “The Spread of Ugly Rumors,” “Weaver 
Recants His Heresy,” “Putting a Provincial in His Place,” and (in case there was any doubt 
that this was war) “Murchison Opens the Rhineland Campaign.” The fight was finally settled 
in 1879 with the simple expedient of coming up with a new period, the Ordovician, to be 
inserted between the two. 

    Because the British were the most active in the early years, British names are predominant 
in the geological lexicon. Devonian is of course from the English county of Devon. Cambrian 
comes from the Roman name for Wales, while Ordovician and Silurian recall ancient Welsh 
tribes, the Ordovices and Silures. But with the rise of geological prospecting elsewhere, 
names began to creep in from all over.Jurassic refers to the Jura Mountains on the border of 
France and Switzerland.Permian recalls the former Russian province of Perm in the Ural 
Mountains. ForCretaceous (from the Latin for “chalk”) we are indebted to a Belgian geologist 
with the perky name of J. J. d’Omalius d’Halloy. 

    Originally, geological history was divided into four spans of time: primary, secondary, 
tertiary, and quaternary. The system was too neat to last, and soon geologists were 
contributing additional divisions while eliminating others. Primary and secondary fell out of 
use altogether, while quaternary was discarded by some but kept by others. Today only 
tertiary remains as a common designation everywhere, even though it no longer represents a 
third period of anything. 

    Lyell, in his Principles, introduced additional units known as epochs or series to cover the 
period since the age of the dinosaurs, among them Pleistocene (“most recent”), Pliocene 
(“more recent”), Miocene (“moderately recent”), and the rather endearingly vague Oligocene 
(“but a little recent”). Lyell originally intended to employ “-synchronous” for his endings, 
giving us such crunchy designations as Meiosynchronous and Pleiosynchronous. The 
Reverend William Whewell, an influential man, objected on etymological grounds and 
suggested instead an “-eous” pattern, producing Meioneous, Pleioneous, and so on. The “-
cene” terminations were thus something of a compromise. 



    Nowadays, and speaking very generally, geological time is divided first into four great 
chunks known as eras: Precambrian, Paleozoic (from the Greek meaning “old life”), 
Mesozoic (“middle life”), and Cenozoic (“recent life”). These four eras are further divided 
into anywhere from a dozen to twenty subgroups, usually called periods though sometimes 
known as systems. Most of these are also reasonably well known: Cretaceous, Jurassic, 
Triassic, Silurian, and so on.1  

    Then come Lyell’s epochs—the Pleistocene, Miocene, and so on—which apply only to the 
most recent (but paleontologically busy) sixty-five million years, and finally we have a mass 
of finer subdivisions known as stages or ages. Most of these are named, nearly always 
awkwardly, after places: Illinoian, Desmoinesian, Croixian, Kimmeridgian, and so on in like 
vein. Altogether, according to John McPhee, these number in the “tens of dozens.” 
Fortunately, unless you take up geology as a career, you are unlikely ever to hear any of them 
again. 

    Further confusing the matter is that the stages or ages in North America have different 
names from the stages in Europe and often only roughly intersect in time. Thus the North 
American Cincinnatian stage mostly corresponds with the Ashgillian stage in Europe, plus a 
tiny bit of the slightly earlier Caradocian stage. 

    Also, all this changes from textbook to textbook and from person to person, so that some 
authorities describe seven recent epochs, while others are content with four. In some books, 
too, you will find the tertiary and quaternary taken out and replaced by periods of different 
lengths called the Palaeogene and Neogene. Others divide the Precambrian into two eras, the 
very ancient Archean and the more recent Proterozoic. Sometimes too you will see the term 
Phanerozoic used to describe the span encompassing the Cenozoic, Mesozoic, and Paleozoic 
eras. 

    Moreover, all this applies only to units of time . Rocks are divided into quite separate units 
known as systems, series, and stages. A distinction is also made between late and early 
(referring to time) and upper and lower (referring to layers of rock). It can all get terribly 
confusing to nonspecialists, but to a geologist these can be matters of passion. “I have seen 
grown men glow incandescent with rage over this metaphorical millisecond in life’s history,” 
the British paleontologist Richard Fortey has written with regard to a long-running twentieth-
century dispute over where the boundary lies between the Cambrian and Ordovician. 

    At least today we can bring some sophisticated dating techniques to the table. For most of 
the nineteenth century geologists could draw on nothing more than the most hopeful 
guesswork. The frustrating position then was that although they could place the various rocks 
and fossils in order by age, they had no idea how long any of those ages were. When 
Buckland speculated on the antiquity of an Ichthyosaurus skeleton he could do no better than 
suggest that it had lived somewhere between “ten thousand, or more than ten thousand times 
ten thousand” years earlier. 

    Although there was no reliable way of dating periods, there was no shortage of people 
willing to try. The most well known early attempt was in 1650 when Archbishop James 
Ussher of the Church of Ireland made a careful study of the Bible and other historical sources 
and concluded, in a hefty tome called Annals of the Old Testament , that the Earth had been 
                                                 
1 There will be no testing here, but if you are ever required to memorize them you might wish to remember John 
Wilford's helpful advice to think of the eras (Precambrian, Paleozoic, Mesozoic, an( Cenozoic) as seasons in a 
year and the periods (Permian, Triassic Jurassic, etc.) as the months. 



created at midday on October 23, 4004B.C. , an assertion that has amused historians and 
textbook writers ever since.2  

    There is a persistent myth, incidentally—and one propounded in many serious books—that 
Ussher’s views dominated scientific beliefs well into the nineteenth century, and that it was 
Lyell who put everyone straight. Stephen Jay Gould, in Time’s Arrow, cites as a typical 
example this sentence from a popular book of the 1980s: “Until Lyell published his book, 
most thinking people accepted the idea that the earth was young.” In fact, no. As Martin J. S. 
Rudwick puts it, “No geologist of any nationality whose work was taken seriously by other 
geologists advocated a timescale confined within the limits of a literalistic exegesis of 
Genesis.” Even the Reverend Buckland, as pious a soul as the nineteenth century produced, 
noted that nowhere did the Bible suggest that God made Heaven and Earth on the first day, 
but merely “in the beginning.” That beginning, he reasoned, may have lasted “millions upon 
millions of years.” Everyone agreed that the Earth was ancient. The question was simply how 
ancient. 

    One of the better early attempts at dating the planet came from the ever-reliable Edmond 
Halley, who in 1715 suggested that if you divided the total amount of salt in the world’s seas 
by the amount added each year, you would get the number of years that the oceans had been 
in existence, which would give you a rough idea of Earth’s age. The logic was appealing, but 
unfortunately no one knew how much salt was in the sea or by how much it increased each 
year, which rendered the experiment impracticable. 

    The first attempt at measurement that could be called remotely scientific was made by the 
Frenchman Georges-Louis Leclerc, Comte de Buffon, in the 1770s. It had long been known 
that the Earth radiated appreciable amounts of heat—that was apparent to anyone who went 
down a coal mine—but there wasn’t any way of estimating the rate of dissipation. Buffon’s 
experiment consisted of heating spheres until they glowed white hot and then estimating the 
rate of heat loss by touching them (presumably very lightly at first) as they cooled. From this 
he guessed the Earth’s age to be somewhere between 75,000 and 168,000 years old. This was 
of course a wild underestimate, but a radical notion nonetheless, and Buffon found himself 
threatened with excommunication for expressing it. A practical man, he apologized at once 
for his thoughtless heresy, then cheerfully repeated the assertions throughout his subsequent 
writings. 

    By the middle of the nineteenth century most learned people thought the Earth was at least 
a few million years old, perhaps even some tens of millions of years old, but probably not 
more than that. So it came as a surprise when, in 1859 in On the Origin of Species , Charles 
Darwin announced that the geological processes that created the Weald, an area of southern 
England stretching across Kent, Surrey, and Sussex, had taken, by his calculations, 
306,662,400 years to complete. The assertion was remarkable partly for being so arrestingly 
specific but even more for flying in the face of accepted wisdom about the age of the Earth.3 It 
proved so contentious that Darwin withdrew it from the third edition of the book. The 

                                                 
2 Although virtually all books find a space for him, there is a striking variability in the details associated with 
Ussher. Some books say he made his pronouncement in 1650, others in 1654, still others in 1664. Many cite the 
date of Earth's reputed beginning as October 26. At least one book of note spells his name "Usher." The matter is 
interestingly surveyed in Stephen Jay Gould's Eight Little Piggies. 
3 Darwin loved an exact number. In a later work, he announced that the number of worms to be found in an 
average acre of English country soil was 53,767. 
 



problem at its heart remained, however. Darwin and his geological friends needed the Earth to 
be old, but no one could figure out a way to make it so. 

  

    Unfortunately for Darwin, and for progress, the question came to the attention of the great 
Lord Kelvin (who, though indubitably great, was then still just plain William Thomson; he 
wouldn’t be elevated to the peerage until 1892, when he was sixty-eight years old and nearing 
the end of his career, but I shall follow the convention here of using the name retroactively). 
Kelvin was one of the most extraordinary figures of the nineteenth century—indeed of any 
century. The German scientist Hermann von Helmholtz, no intellectual slouch himself, wrote 
that Kelvin had by far the greatest “intelligence and lucidity, and mobility of thought” of any 
man he had ever met. “I felt quite wooden beside him sometimes,” he added, a bit dejectedly. 

    The sentiment is understandable, for Kelvin really was a kind of Victorian superman. He 
was born in 1824 in Belfast, the son of a professor of mathematics at the Royal Academical 
Institution who soon after transferred to Glasgow. There Kelvin proved himself such a 
prodigy that he was admitted to Glasgow University at the exceedingly tender age of ten. By 
the time he had reached his early twenties, he had studied at institutions in London and Paris, 
graduated from Cambridge (where he won the university’s top prizes for rowing and 
mathematics, and somehow found time to launch a musical society as well), been elected a 
fellow of Peterhouse, and written (in French and English) a dozen papers in pure and applied 
mathematics of such dazzling originality that he had to publish them anonymously for fear of 
embarrassing his superiors. At the age of twenty-two he returned to Glasgow University to 
take up a professorship in natural philosophy, a position he would hold for the next fifty-three 
years. 

    In the course of a long career (he lived till 1907 and the age of eighty-three), he wrote 661 
papers, accumulated 69 patents (from which he grew abundantly wealthy), and gained renown 
in nearly every branch of the physical sciences. Among much else, he suggested the method 
that led directly to the invention of refrigeration, devised the scale of absolute temperature 
that still bears his name, invented the boosting devices that allowed telegrams to be sent 
across oceans, and made innumerable improvements to shipping and navigation, from the 
invention of a popular marine compass to the creation of the first depth sounder. And those 
were merely his practical achievements. 

    His theoretical work, in electromagnetism, thermodynamics, and the wave theory of light, 
was equally revolutionary.4 He had really only one flaw and that was an inability to calculate 
the correct age of the Earth. The question occupied much of the second half of his career, but 
he never came anywhere near getting it right. His first effort, in 1862 for an article in a 
popular magazine called Macmillan’s , suggested that the Earth was 98 million years old, but 
cautiously allowed that the figure could be as low as 20 million years or as high as 400 
million. With remarkable prudence he acknowledged that his calculations could be wrong if 
                                                 
4 In particular he elaborated the Second Law of Thermodynamics. A discussion of these laws would be a book in 
itself, but I offer here this crisp summation by the chemist P. W Atkins, just to provide a sense of them: "There 
are four Laws. The third of them, the Second Law, was recognized first; the first, the Zeroth Law, was 
formulated last; the First Law was second; the Third Law might not even be a law in the same sense as the 
others." In briefest terms, the second la\\ states that a little energy is always wasted. You can't have a perpetual 
motion device because no matter how efficient, it will always lose energy and eventually run down. The first law 
says that you can't create energy and the third that you can't reduce temperatures to absolute zero; there will 
always be some residual warmth. As Dennis Overbye notes, the three principal laws are sometimes expressed 
jocularly as (1) you can't win, (2) you can't break even, and (3) you can't get out of the game. 



“sources now unknown to us are prepared in the great storehouse of creation”—but it was 
clear that he thought that unlikely. 

    With the passage of time Kelvin would become more forthright in his assertions and less 
correct. He continually revised his estimates downward, from a maximum of 400 million 
years, to 100 million years, to 50 million years, and finally, in 1897, to a mere 24 million 
years. Kelvin wasn’t being willful. It was simply that there was nothing in physics that could 
explain how a body the size of the Sun could burn continuously for more than a few tens of 
millions of years at most without exhausting its fuel. Therefore it followed that the Sun and its 
planets were relatively, but inescapably, youthful. 

    The problem was that nearly all the fossil evidence contradicted this, and suddenly in the 
nineteenth century there was a lot of fossil evidence. 



6    SCIENCE RED IN TOOTH AND CLAW 

IN 1787, SOMEONE in New Jersey—exactly who now seems to be forgotten—found an 
enormous thighbone sticking out of a stream bank at a place called Woodbury Creek. The 
bone clearly didn’t belong to any species of creature still alive, certainly not in New Jersey. 
From what little is known now, it is thought to have belonged to a hadrosaur, a large duck-
billed dinosaur. At the time, dinosaurs were unknown. 

    The bone was sent to Dr. Caspar Wistar, the nation’s leading anatomist, who described it at 
a meeting of the American Philosophical Society in Philadelphia that autumn. Unfortunately, 
Wistar failed completely to recognize the bone’s significance and merely made a few cautious 
and uninspired remarks to the effect that it was indeed a whopper. He thus missed the chance, 
half a century ahead of anyone else, to be the discoverer of dinosaurs. Indeed, the bone 
excited so little interest that it was put in a storeroom and eventually disappeared altogether. 
So the first dinosaur bone ever found was also the first to be lost. 

    That the bone didn’t attract greater interest is more than a little puzzling, for its appearance 
came at a time when America was in a froth of excitement about the remains of large, ancient 
animals. The cause of this froth was a strange assertion by the great French naturalist the 
Comte de Buffon—he of the heated spheres from the previous chapter—that living things in 
the New World were inferior in nearly every way to those of the Old World. America, Buffon 
wrote in his vast and much-esteemed Histoire Naturelle , was a land where the water was 
stagnant, the soil unproductive, and the animals without size or vigor, their constitutions 
weakened by the “noxious vapors” that rose from its rotting swamps and sunless forests. In 
such an environment even the native Indians lacked virility. “They have no beard or body 
hair,” Buffon sagely confided, “and no ardor for the female.” Their reproductive organs were 
“small and feeble.” 

    Buffon’s observations found surprisingly eager support among other writers, especially 
those whose conclusions were not complicated by actual familiarity with the country. A 
Dutchman named Comeille de Pauw announced in a popular work called Recherches 
Philosophiques sur les Américains that native American males were not only reproductively 
unimposing, but “so lacking in virility that they had milk in their breasts.” Such views 
enjoyed an improbable durability and could be found repeated or echoed in European texts till 
near the end of the nineteenth century. 

    Not surprisingly, such aspersions were indignantly met in America. Thomas Jefferson 
incorporated a furious (and, unless the context is understood, quite bewildering) rebuttal in his 
Notes on the State of Virginia , and induced his New Hampshire friend General John Sullivan 
to send twenty soldiers into the northern woods to find a bull moose to present to Buffon as 
proof of the stature and majesty of American quadrupeds. It took the men two weeks to track 
down a suitable subject. The moose, when shot, unfortunately lacked the imposing horns that 
Jefferson had specified, but Sullivan thoughtfully included a rack of antlers from an elk or 
stag with the suggestion that these be attached instead. Who in France, after all, would know? 

    Meanwhile in Philadelphia—Wistar’s city—naturalists had begun to assemble the bones of 
a giant elephant-like creature known at first as “the great American incognitum” but later 
identified, not quite correctly, as a mammoth. The first of these bones had been discovered at 
a place called Big Bone Lick in Kentucky, but soon others were turning up all over. America, 
it appeared, had once been the home of a truly substantial creature—one that would surely 
disprove Buffon’s foolish Gallic contentions. 



    In their keenness to demonstrate the incognitum’s bulk and ferocity, the American 
naturalists appear to have become slightly carried away. They overestimated its size by a 
factor of six and gave it frightening claws, which in fact came from a Megalonyx, or giant 
ground sloth, found nearby. Rather remarkably, they persuaded themselves that the animal 
had enjoyed “the agility and ferocity of the tiger,” and portrayed it in illustrations as pouncing 
with feline grace onto prey from boulders. When tusks were discovered, they were forced into 
the animal’s head in any number of inventive ways. One restorer screwed the tusks in upside 
down, like the fangs of a saber-toothed cat, which gave it a satisfyingly aggressive aspect. 
Another arranged the tusks so that they curved backwards on the engaging theory that the 
creature had been aquatic and had used them to anchor itself to trees while dozing. The most 
pertinent consideration about the incognitum, however, was that it appeared to be extinct—a 
fact that Buffon cheerfully seized upon as proof of its incontestably degenerate nature. 

    Buffon died in 1788, but the controversy rolled on. In 1795 a selection of bones made their 
way to Paris, where they were examined by the rising star of paleontology, the youthful and 
aristocratic Georges Cuvier. Cuvier was already dazzling people with his genius for taking 
heaps of disarticulated bones and whipping them into shapely forms. It was said that he could 
describe the look and nature of an animal from a single tooth or scrap of jaw, and often name 
the species and genus into the bargain. Realizing that no one in America had thought to write 
a formal description of the lumbering beast, Cuvier did so, and thus became its official 
discoverer. He called it a mastodon (which means, a touch unexpectedly, “nipple-teeth”). 

    Inspired by the controversy, in 1796 Cuvier wrote a landmark paper, Note on the Species of 
Living and Fossil Elephants, in which he put forward for the first time a formal theory of 
extinctions. His belief was that from time to time the Earth experienced global catastrophes in 
which groups of creatures were wiped out. For religious people, including Cuvier himself, the 
idea raised uncomfortable implications since it suggested an unaccountable casualness on the 
part of Providence. To what end would God create species only to wipe them out later? The 
notion was contrary to the belief in the Great Chain of Being, which held that the world was 
carefully ordered and that every living thing within it had a place and purpose, and always had 
and always would. Jefferson for one couldn’t abide the thought that whole species would ever 
be permitted to vanish (or, come to that, to evolve). So when it was put to him that there 
might be scientific and political value in sending a party to explore the interior of America 
beyond the Mississippi he leapt at the idea, hoping the intrepid adventurers would find herds 
of healthy mastodons and other outsized creatures grazing on the bounteous plains. 
Jefferson’s personal secretary and trusted friend Meriwether Lewis was chosen co-leader and 
chief naturalist for the expedition. The person selected to advise him on what to look out for 
with regard to animals living and deceased was none other than Caspar Wistar. 

  

    In the same year—in fact, the same month—that the aristocratic and celebrated Cuvier was 
propounding his extinction theories in Paris, on the other side of the English Channel a rather 
more obscure Englishman was having an insight into the value of fossils that would also have 
lasting ramifications. William Smith was a young supervisor of construction on the Somerset 
Coal Canal. On the evening of January 5, 1796, he was sitting in a coaching inn in Somerset 
when he jotted down the notion that would eventually make his reputation. To interpret rocks, 
there needs to be some means of correlation, a basis on which you can tell that those 
carboniferous rocks from Devon are younger than these Cambrian rocks from Wales. Smith’s 
insight was to realize that the answer lay with fossils. At every change in rock strata certain 
species of fossils disappeared while others carried on into subsequent levels. By noting which 



species appeared in which strata, you could work out the relative ages of rocks wherever they 
appeared. Drawing on his knowledge as a surveyor, Smith began at once to make a map of 
Britain’s rock strata, which would be published after many trials in 1815 and would become a 
cornerstone of modern geology. (The story is comprehensively covered in Simon 
Winchester’s popular book The Map That Changed the World .) 

    Unfortunately, having had his insight, Smith was curiously uninterested in understanding 
why rocks were laid down in the way they were. “I have left off puzzling about the origin of 
Strata and content myself with knowing that it is so,” he recorded. “The whys and wherefores 
cannot come within the Province of a Mineral Surveyor.” 

    Smith’s revelation regarding strata heightened the moral awkwardness concerning 
extinctions. To begin with, it confirmed that God had wiped out creatures not occasionally but 
repeatedly. This made Him seem not so much careless as peculiarly hostile. It also made it 
inconveniently necessary to explain how some species were wiped out while others continued 
unimpeded into succeeding eons. Clearly there was more to extinctions than could be 
accounted for by a single Noachian deluge, as the Biblical flood was known. Cuvier resolved 
the matter to his own satisfaction by suggesting that Genesis applied only to the most recent 
inundation. God, it appeared, hadn’t wished to distract or alarm Moses with news of earlier, 
irrelevant extinctions. 

    So by the early years of the nineteenth century, fossils had taken on a certain inescapable 
importance, which makes Wistar’s failure to see the significance of his dinosaur bone all the 
more unfortunate. Suddenly, in any case, bones were turning up all over. Several other 
opportunities arose for Americans to claim the discovery of dinosaurs but all were wasted. In 
1806 the Lewis and Clark expedition passed through the Hell Creek formation in Montana, an 
area where fossil hunters would later literally trip over dinosaur bones, and even examined 
what was clearly a dinosaur bone embedded in rock, but failed to make anything of it. Other 
bones and fossilized footprints were found in the Connecticut River Valley of New England 
after a farm boy named Plinus Moody spied ancient tracks on a rock ledge at South Hadley, 
Massachusetts. Some of these at least survive—notably the bones of an Anchisaurus, which 
are in the collection of the Peabody Museum at Yale. Found in 1818, they were the first 
dinosaur bones to be examined and saved, but unfortunately weren’t recognized for what they 
were until 1855. In that same year, 1818, Caspar Wistar died, but he did gain a certain 
unexpected immortality when a botanist named Thomas Nuttall named a delightful climbing 
shrub after him. Some botanical purists still insist on spelling it wistaria . 

  

    By this time, however, paleontological momentum had moved to England. In 1812, at 
Lyme Regis on the Dorset coast, an extraordinary child named Mary Anning—aged eleven, 
twelve, or thirteen, depending on whose account you read—found a strange fossilized sea 
monster, seventeen feet long and now known as the ichthyosaurus, embedded in the steep and 
dangerous cliffs along the English Channel. 

    It was the start of a remarkable career. Anning would spend the next thirty-five years 
gathering fossils, which she sold to visitors. (She is commonly held to be the source for the 
famous tongue twister “She sells seashells on the seashore.”) She would also find the first 
plesiosaurus, another marine monster, and one of the first and best pterodactyls. Though none 
of these was technically a dinosaur, that wasn’t terribly relevant at the time since nobody then 



knew what a dinosaur was. It was enough to realize that the world had once held creatures 
strikingly unlike anything we might now find. 

    It wasn’t simply that Anning was good at spotting fossils—though she was unrivalled at 
that—but that she could extract them with the greatest delicacy and without damage. If you 
ever have the chance to visit the hall of ancient marine reptiles at the Natural History Museum 
in London, I urge you to take it for there is no other way to appreciate the scale and beauty of 
what this young woman achieved working virtually unaided with the most basic tools in 
nearly impossible conditions. The plesiosaur alone took her ten years of patient excavation. 
Although untrained, Anning was also able to provide competent drawings and descriptions for 
scholars. But even with the advantage of her skills, significant finds were rare and she passed 
most of her life in poverty. 

    It would be hard to think of a more overlooked person in the history of paleontology than 
Mary Anning, but in fact there was one who came painfully close. His name was Gideon 
Algernon Mantell and he was a country doctor in Sussex. 

    Mantell was a lanky assemblage of shortcomings—he was vain, self-absorbed, priggish, 
neglectful of his family—but never was there a more devoted amateur paleontologist. He was 
also lucky to have a devoted and observant wife. In 1822, while he was making a house call 
on a patient in rural Sussex, Mrs. Mantell went for a stroll down a nearby lane and in a pile of 
rubble that had been left to fill potholes she found a curious object—a curved brown stone, 
about the size of a small walnut. Knowing her husband’s interest in fossils, and thinking it 
might be one, she took it to him. Mantell could see at once it was a fossilized tooth, and after 
a little study became certain that it was from an animal that was herbivorous, reptilian, 
extremely large—tens of feet long—and from the Cretaceous period. He was right on all 
counts, but these were bold conclusions since nothing like it had been seen before or even 
imagined. 

    Aware that his finding would entirely upend what was understood about the past, and urged 
by his friend the Reverend William Buckland—he of the gowns and experimental appetite—
to proceed with caution, Mantell devoted three painstaking years to seeking evidence to 
support his conclusions. He sent the tooth to Cuvier in Paris for an opinion, but the great 
Frenchman dismissed it as being from a hippopotamus. (Cuvier later apologized handsomely 
for this uncharacteristic error.) One day while doing research at the Hunterian Museum in 
London, Mantell fell into conversation with a fellow researcher who told him the tooth looked 
very like those of animals he had been studying, South American iguanas. A hasty 
comparison confirmed the resemblance. And so Mantell’s creature became Iguanodon , after 
a basking tropical lizard to which it was not in any manner related. 

    Mantell prepared a paper for delivery to the Royal Society. Unfortunately it emerged that 
another dinosaur had been found at a quarry in Oxfordshire and had just been formally 
described—by the Reverend Buckland, the very man who had urged him not to work in haste. 
It was the Megalosaurus, and the name was actually suggested to Buckland by his friend Dr. 
James Parkinson, the would-be radical and eponym for Parkinson’s disease. Buckland, it may 
be recalled, was foremost a geologist, and he showed it with his work on Megalosaurus. In his 
report, for the Transactions of the Geological Society of London , he noted that the creature’s 
teeth were not attached directly to the jawbone as in lizards but placed in sockets in the 
manner of crocodiles. But having noticed this much, Buckland failed to realize what it meant: 
Megalosaurus was an entirely new type of creature. So although his report demonstrated little 
acuity or insight, it was still the first published description of a dinosaur, and so to him rather 



than the far more deserving Mantell goes the credit for the discovery of this ancient line of 
beings. 

    Unaware that disappointment was going to be a continuing feature of his life, Mantell 
continued hunting for fossils—he found another giant, the Hylaeosaurus, in 1833—and 
purchasing others from quarrymen and farmers until he had probably the largest fossil 
collection in Britain. Mantell was an excellent doctor and equally gifted bone hunter, but he 
was unable to support both his talents. As his collecting mania grew, he neglected his medical 
practice. Soon fossils filled nearly the whole of his house in Brighton and consumed much of 
his income. Much of the rest went to underwriting the publication of books that few cared to 
own. Illustrations of the Geology of Sussex , published in 1827, sold only fifty copies and left 
him £300 out of pocket—an uncomfortably substantial sum for the times. 

    In some desperation Mantell hit on the idea of turning his house into a museum and 
charging admission, then belatedly realized that such a mercenary act would ruin his standing 
as a gentleman, not to mention as a scientist, and so he allowed people to visit the house for 
free. They came in their hundreds, week after week, disrupting both his practice and his home 
life. Eventually he was forced to sell most of his collection to pay off his debts. Soon after, his 
wife left him, taking their four children with her. 

    Remarkably, his troubles were only just beginning. 

  

    In the district of Sydenham in south London, at a place called Crystal Palace Park, there 
stands a strange and forgotten sight: the world’s first life-sized models of dinosaurs. Not many 
people travel there these days, but once this was one of the most popular attractions in 
London—in effect, as Richard Fortey has noted, the world’s first theme park. Quite a lot 
about the models is not strictly correct. The iguanodon’s thumb has been placed on its nose, 
as a kind of spike, and it stands on four sturdy legs, making it look like a rather stout and 
awkwardly overgrown dog. (In life, the iguanodon did not crouch on all fours, but was 
bipedal.) Looking at them now you would scarcely guess that these odd and lumbering beasts 
could cause great rancor and bitterness, but they did. Perhaps nothing in natural history has 
been at the center of fiercer and more enduring hatreds than the line of ancient beasts known 
as dinosaurs. 

    At the time of the dinosaurs’ construction, Sydenham was on the edge of London and its 
spacious park was considered an ideal place to re-erect the famous Crystal Palace, the glass 
and cast-iron structure that had been the centerpiece of the Great Exhibition of 1851, and from 
which the new park naturally took its name. The dinosaurs, built of concrete, were a kind of 
bonus attraction. On New Year’s Eve 1853 a famous dinner for twenty-one prominent 
scientists was held inside the unfinished iguanodon. Gideon Mantell, the man who had found 
and identified the iguanodon, was not among them. The person at the head of the table was 
the greatest star of the young science of paleontology. His name was Richard Owen and by 
this time he had already devoted several productive years to making Gideon Mantell’s life 
hell. 

    Owen had grown up in Lancaster, in the north of England, where he had trained as a doctor. 
He was a born anatomist and so devoted to his studies that he sometimes illicitly borrowed 
limbs, organs, and other parts from cadavers and took them home for leisurely dissection. 
Once while carrying a sack containing the head of a black African sailor that he had just 



removed, Owen slipped on a wet cobble and watched in horror as the head bounced away 
from him down the lane and through the open doorway of a cottage, where it came to rest in 
the front parlor. What the occupants had to say upon finding an unattached head rolling to a 
halt at their feet can only be imagined. One assumes that they had not formed any terribly 
advanced conclusions when, an instant later, a fraught-looking young man rushed in, 
wordlessly retrieved the head, and rushed out again. 

    In 1825, aged just twenty-one, Owen moved to London and soon after was engaged by the 
Royal College of Surgeons to help organize their extensive, but disordered, collections of 
medical and anatomical specimens. Most of these had been left to the institution by John 
Hunter, a distinguished surgeon and tireless collector of medical curiosities, but had never 
been catalogued or organized, largely because the paperwork explaining the significance of 
each had gone missing soon after Hunter’s death. 

    Owen swiftly distinguished himself with his powers of organization and deduction. At the 
same time he showed himself to be a peerless anatomist with instincts for reconstruction 
almost on a par with the great Cuvier in Paris. He become such an expert on the anatomy of 
animals that he was granted first refusal on any animal that died at the London Zoological 
Gardens, and these he would invariably have delivered to his house for examination. Once his 
wife returned home to find a freshly deceased rhinoceros filling the front hallway. He quickly 
became a leading expert on all kinds of animals living and extinct—from platypuses, 
echidnas, and other newly discovered marsupials to the hapless dodo and the extinct giant 
birds called moas that had roamed New Zealand until eaten out of existence by the Maoris. He 
was the first to describe the archaeopteryx after its discovery in Bavaria in 1861 and the first 
to write a formal epitaph for the dodo. Altogether he produced some six hundred anatomical 
papers, a prodigious output. 

    But it was for his work with dinosaurs that Owen is remembered. He coined the term 
dinosauria in 1841. It means “terrible lizard” and was a curiously inapt name. Dinosaurs, as 
we now know, weren’t all terrible—some were no bigger than rabbits and probably extremely 
retiring—and the one thing they most emphatically were not was lizards, which are actually of 
a much older (by thirty million years) lineage. Owen was well aware that the creatures were 
reptilian and had at his disposal a perfectly good Greek word, herpeton, but for some reason 
chose not to use it. Another, more excusable error (given the paucity of specimens at the time) 
was that dinosaurs constitute not one but two orders of reptiles: the bird-hipped ornithischians 
and the lizard-hipped saurischians. 

    Owen was not an attractive person, in appearance or in temperament. A photograph from 
his late middle years shows him as gaunt and sinister, like the villain in a Victorian 
melodrama, with long, lank hair and bulging eyes—a face to frighten babies. In manner he 
was cold and imperious, and he was without scruple in the furtherance of his ambitions. He 
was the only person Charles Darwin was ever known to hate. Even Owen’s son (who soon 
after killed himself) referred to his father’s “lamentable coldness of heart.” 

    His undoubted gifts as an anatomist allowed him to get away with the most barefaced 
dishonesties. In 1857, the naturalist T. H. Huxley was leafing through a new edition of 
Churchill’s Medical Directory when he noticed that Owen was listed as Professor of 
Comparative Anatomy and Physiology at the Government School of Mines, which rather 
surprised Huxley as that was the position he held. Upon inquiring how Churchill’s had made 
such an elemental error, he was told that the information had been provided to them by Dr. 
Owen himself. A fellow naturalist named Hugh Falconer, meanwhile, caught Owen taking 



credit for one of his discoveries. Others accused him of borrowing specimens, then denying 
he had done so. Owen even fell into a bitter dispute with the Queen’s dentist over the credit 
for a theory concerning the physiology of teeth. 

    He did not hesitate to persecute those whom he disliked. Early in his career Owen used his 
influence at the Zoological Society to blackball a young man named Robert Grant whose only 
crime was to have shown promise as a fellow anatomist. Grant was astonished to discover that 
he was suddenly denied access to the anatomical specimens he needed to conduct his 
research. Unable to pursue his work, he sank into an understandably dispirited obscurity. 

    But no one suffered more from Owen’s unkindly attentions than the hapless and 
increasingly tragic Gideon Mantell. After losing his wife, his children, his medical practice, 
and most of his fossil collection, Mantell moved to London. There in 1841—the fateful year 
in which Owen would achieve his greatest glory for naming and identifying the dinosaurs—
Mantell was involved in a terrible accident. While crossing Clapham Common in a carriage, 
he somehow fell from his seat, grew entangled in the reins, and was dragged at a gallop over 
rough ground by the panicked horses. The accident left him bent, crippled, and in chronic 
pain, with a spine damaged beyond repair. 

    Capitalizing on Mantell’s enfeebled state, Owen set about systematically expunging 
Mantell’s contributions from the record, renaming species that Mantell had named years 
before and claiming credit for their discovery for himself. Mantell continued to try to do 
original research but Owen used his influence at the Royal Society to ensure that most of his 
papers were rejected. In 1852, unable to bear any more pain or persecution, Mantell took his 
own life. His deformed spine was removed and sent to the Royal College of Surgeons 
where—and now here’s an irony for you—it was placed in the care of Richard Owen, director 
of the college’s Hunterian Museum. 

    But the insults had not quite finished. Soon after Mantell’s death an arrestingly uncharitable 
obituary appeared in the Literary Gazette. In it Mantell was characterized as a mediocre 
anatomist whose modest contributions to paleontology were limited by a “want of exact 
knowledge.” The obituary even removed the discovery of the iguanodon from him and 
credited it instead to Cuvier and Owen, among others. Though the piece carried no byline, the 
style was Owen’s and no one in the world of the natural sciences doubted the authorship. 

    By this stage, however, Owen’s transgressions were beginning to catch up with him. His 
undoing began when a committee of the Royal Society—a committee of which he happened 
to be chairman—decided to award him its highest honor, the Royal Medal, for a paper he had 
written on an extinct mollusc called the belemnite. “However,” as Deborah Cadbury notes in 
her excellent history of the period, Terrible Lizard, “this piece of work was not quite as 
original as it appeared.” The belemnite, it turned out, had been discovered four years earlier 
by an amateur naturalist named Chaning Pearce, and the discovery had been fully reported at 
a meeting of the Geological Society. Owen had been at that meeting, but failed to mention 
this when he presented a report of his own to the Royal Society—in which, not incidentally, 
he rechristened the creature Belemnites owenii in his own honor. Although Owen was allowed 
to keep the Royal Medal, the episode left a permanent tarnish on his reputation, even among 
his few remaining supporters. 

    Eventually Huxley managed to do to Owen what Owen had done to so many others: he had 
him voted off the councils of the Zoological and Royal societies. As a final insult Huxley 
became the new Hunterian Professor at the Royal College of Surgeons. 



    Owen would never again do important research, but the latter half of his career was devoted 
to one unexceptionable pursuit for which we can all be grateful. In 1856 he became head of 
the natural history section of the British Museum, in which capacity he became the driving 
force behind the creation of London’s Natural History Museum. The grand and beloved 
Gothic heap in South Kensington, opened in 1880, is almost entirely a testament to his vision. 

    Before Owen, museums were designed primarily for the use and edification of the elite, and 
even then it was difficult to gain access. In the early days of the British Museum, prospective 
visitors had to make a written application and undergo a brief interview to determine if they 
were fit to be admitted at all. They then had to return a second time to pick up a ticket—that is 
assuming they had passed the interview—and finally come back a third time to view the 
museum’s treasures. Even then they were whisked through in groups and not allowed to 
linger. Owen’s plan was to welcome everyone, even to the point of encouraging workingmen 
to visit in the evening, and to devote most of the museum’s space to public displays. He even 
proposed, very radically, to put informative labels on each display so that people could 
appreciate what they were viewing. In this, somewhat unexpectedly, he was opposed by T. H. 
Huxley, who believed that museums should be primarily research institutes. By making the 
Natural History Museum an institution for everyone, Owen transformed our expectations of 
what museums are for. 

    Still, his altruism in general toward his fellow man did not deflect him from more personal 
rivalries. One of his last official acts was to lobby against a proposal to erect a statue in 
memory of Charles Darwin. In this he failed—though he did achieve a certain belated, 
inadvertent triumph. Today his statue commands a masterly view from the staircase of the 
main hall in the Natural History Museum, while Darwin and T. H. Huxley are consigned 
somewhat obscurely to the museum coffee shop, where they stare gravely over people 
snacking on cups of tea and jam doughnuts. 

  

    It would be reasonable to suppose that Richard Owen’s petty rivalries marked the low point 
of nineteenth-century paleontology, but in fact worse was to come, this time from overseas. In 
America in the closing decades of the century there arose a rivalry even more spectacularly 
venomous, if not quite as destructive. It was between two strange and ruthless men, Edward 
Drinker Cope and Othniel Charles Marsh. 

    They had much in common. Both were spoiled, driven, self-centered, quarrelsome, jealous, 
mistrustful, and ever unhappy. Between them they changed the world of paleontology. 

    They began as mutual friends and admirers, even naming fossil species after each other, 
and spent a pleasant week together in 1868. However, something then went wrong between 
them—nobody is quite sure what—and by the following year they had developed an enmity 
that would grow into consuming hatred over the next thirty years. It is probably safe to say 
that no two people in the natural sciences have ever despised each other more. 

    Marsh, the elder of the two by eight years, was a retiring and bookish fellow, with a trim 
beard and dapper manner, who spent little time in the field and was seldom very good at 
finding things when he was there. On a visit to the famous dinosaur fields of Como Bluff, 
Wyoming, he failed to notice the bones that were, in the words of one historian, “lying 
everywhere like logs.” But he had the means to buy almost anything he wanted. Although he 
came from a modest background—his father was a farmer in upstate New York—his uncle 



was the supremely rich and extraordinarily indulgent financier George Peabody. When Marsh 
showed an interest in natural history, Peabody had a museum built for him at Yale and 
provided funds sufficient for Marsh to fill it with almost whatever took his fancy. 

    Cope was born more directly into privilege—his father was a rich Philadelphia 
businessman—and was by far the more adventurous of the two. In the summer of 1876 in 
Montana while George Armstrong Custer and his troops were being cut down at Little Big 
Horn, Cope was out hunting for bones nearby. When it was pointed out to him that this was 
probably not the most prudent time to be taking treasures from Indian lands, Cope thought for 
a minute and decided to press on anyway. He was having too good a season. At one point he 
ran into a party of suspicious Crow Indians, but he managed to win them over by repeatedly 
taking out and replacing his false teeth. 

    For a decade or so, Marsh and Cope’s mutual dislike primarily took the form of quiet 
sniping, but in 1877 it erupted into grandiose dimensions. In that year a Colorado 
schoolteacher named Arthur Lakes found bones near Morrison while out hiking with a friend. 
Recognizing the bones as coming from a “gigantic saurian,” Lakes thoughtfully dispatched 
some samples to both Marsh and Cope. A delighted Cope sent Lakes a hundred dollars for his 
trouble and asked him not to tell anyone of his discovery, especially Marsh. Confused, Lakes 
now asked Marsh to pass the bones on to Cope. Marsh did so, but it was an affront that he 
would never forget. 

    It also marked the start of a war between the two that became increasingly bitter, 
underhand, and often ridiculous. They sometimes stooped to one team’s diggers throwing 
rocks at the other team’s. Cope was caught at one point jimmying open crates that belonged to 
Marsh. They insulted each other in print and each poured scorn on the other’s results. 
Seldom—perhaps never—has science been driven forward more swiftly and successfully by 
animosity. Over the next several years the two men between them increased the number of 
known dinosaur species in America from 9 to almost 150. Nearly every dinosaur that the 
average person can name—stegosaurus, brontosaurus, diplodocus, triceratops—was found by 
one or the other of them.1 Unfortunately, they worked in such reckless haste that they often 
failed to note that a new discovery was something already known. Between them they 
managed to “discover” a species calledUintatheres anceps no fewer than twenty-two times. It 
took years to sort out some of the classification messes they made. Some are not sorted out 
yet. 

    Of the two, Cope’s scientific legacy was much the more substantial. In a breathtakingly 
industrious career, he wrote some 1,400 learned papers and described almost 1,300 new 
species of fossil (of all types, not just dinosaurs)—more than double Marsh’s output in both 
cases. Cope might have done even more, but unfortunately he went into a rather precipitate 
descent in his later years. Having inherited a fortune in 1875, he invested unwisely in silver 
and lost everything. He ended up living in a single room in a Philadelphia boarding house, 
surrounded by books, papers, and bones. Marsh by contrast finished his days in a splendid 
mansion in New Haven. Cope died in 1897, Marsh two years later. 

    In his final years, Cope developed one other interesting obsession. It became his earnest 
wish to be declared the type specimen forHomo sapiens —that is, that his bones would be the 
official set for the human race. Normally, the type specimen of a species is the first set of 

                                                 
1 The notable exception being the Tyrannosaurus rex, which was found by Barnum Brown in 1902. 
 



bones found, but since no first set of Homo sapiens bones exists, there was a vacancy, which 
Cope desired to fill. It was an odd and vain wish, but no one could think of any grounds to 
oppose it. To that end, Cope willed his bones to the Wistar Institute, a learned society in 
Philadelphia endowed by the descendants of the seemingly inescapable Caspar Wistar. 
Unfortunately, after his bones were prepared and assembled, it was found that they showed 
signs of incipient syphilis, hardly a feature one would wish to preserve in the type specimen 
for one’s own race. So Cope’s petition and his bones were quietly shelved. There is still no 
type specimen for modern humans. 

    As for the other players in this drama, Owen died in 1892, a few years before Cope or 
Marsh. Buckland ended up by losing his mind and finished his days a gibbering wreck in a 
lunatic asylum in Clapham, not far from where Mantell had suffered his crippling accident. 
Mantell’s twisted spine remained on display at the Hunterian Museum for nearly a century 
before being mercifully obliterated by a German bomb in the Blitz. What remained of 
Mantell’s collection after his death passed on to his children, and much of it was taken to New 
Zealand by his son Walter, who emigrated there in 1840. Walter became a distinguished Kiwi, 
eventually attaining the office of Minister of Native Affairs. In 1865 he donated the prime 
specimens from his father’s collection, including the famous iguanodon tooth, to the Colonial 
Museum (now the Museum of New Zealand) in Wellington, where they have remained ever 
since. The iguanodon tooth that started it all—arguably the most important tooth in 
paleontology—is no longer on display. 

  

    Of course dinosaur hunting didn’t end with the deaths of the great nineteenth-century fossil 
hunters. Indeed, to a surprising extent it had only just begun. In 1898, the year that fell 
between the deaths of Cope and Marsh, a trove greater by far than anything found before was 
discovered—noticed, really—at a place called Bone Cabin Quarry, only a few miles from 
Marsh’s prime hunting ground at Como Bluff, Wyoming. There, hundreds and hundreds of 
fossil bones were to be found weathering out of the hills. They were so numerous, in fact, that 
someone had built a cabin out of them—hence the name. In just the first two seasons, 100,000 
pounds of ancient bones were excavated from the site, and tens of thousands of pounds more 
came in each of the half dozen years that followed. 

    The upshot is that by the turn of the twentieth century, paleontologists had literally tons of 
old bones to pick over. The problem was that they still didn’t have any idea how old any of 
these bones were. Worse, the agreed ages for the Earth couldn’t comfortably support the 
numbers of eons and ages and epochs that the past obviously contained. If Earth were really 
only twenty million years old or so, as the great Lord Kelvin insisted, then whole orders of 
ancient creatures must have come into being and gone out again practically in the same 
geological instant. It just made no sense. 

    Other scientists besides Kelvin turned their minds to the problem and came up with results 
that only deepened the uncertainty. Samuel Haughton, a respected geologist at Trinity College 
in Dublin, announced an estimated age for the Earth of 2,300 million years—way beyond 
anything anybody else was suggesting. When this was drawn to his attention, he recalculated 
using the same data and put the figure at 153 million years. John Joly, also of Trinity, decided 
to give Edmond Halley’s ocean salts idea a whirl, but his method was based on so many 
faulty assumptions that he was hopelessly adrift. He calculated that the Earth was 89 million 
years old—an age that fit neatly enough with Kelvin’s assumptions but unfortunately not with 
reality. 



    Such was the confusion that by the close of the nineteenth century, depending on which 
text you consulted, you could learn that the number of years that stood between us and the 
dawn of complex life in the Cambrian period was 3 million, 18 million, 600 million, 794 
million, or 2.4 billion—or some other number within that range. As late as 1910, one of the 
most respected estimates, by the American George Becker, put the Earth’s age at perhaps as 
little as 55 million years. 

    Just when matters seemed most intractably confused, along came another extraordinary 
figure with a novel approach. He was a bluff and brilliant New Zealand farm boy named 
Ernest Rutherford, and he produced pretty well irrefutable evidence that the Earth was at least 
many hundreds of millions of years old, probably rather more. 

    Remarkably, his evidence was based on alchemy—natural, spontaneous, scientifically 
credible, and wholly non-occult, but alchemy nonetheless. Newton, it turned out, had not been 
so wrong after all. And exactly how that came to be is of course another story. 



7    ELEMENTAL MATTERS 

CHEMISTRY AS AN earnest and respectable science is often said to date from 1661, when 
Robert Boyle of Oxford published The Sceptical Chymist —the first work to distinguish 
between chemists and alchemists—but it was a slow and often erratic transition. Into the 
eighteenth century scholars could feel oddly comfortable in both camps—like the German 
Johann Becher, who produced an unexceptionable work on mineralogy called Physica 
Subterranea , but who also was certain that, given the right materials, he could make himself 
invisible. 

    Perhaps nothing better typifies the strange and often accidental nature of chemical science 
in its early days than a discovery made by a German named Hennig Brand in 1675. Brand 
became convinced that gold could somehow be distilled from human urine. (The similarity of 
color seems to have been a factor in his conclusion.) He assembled fifty buckets of human 
urine, which he kept for months in his cellar. By various recondite processes, he converted the 
urine first into a noxious paste and then into a translucent waxy substance. None of it yielded 
gold, of course, but a strange and interesting thing did happen. After a time, the substance 
began to glow. Moreover, when exposed to air, it often spontaneously burst into flame. 

    The commercial potential for the stuff—which soon became known as phosphorus, from 
Greek and Latin roots meaning “light bearing”—was not lost on eager businesspeople, but the 
difficulties of manufacture made it too costly to exploit. An ounce of phosphorus retailed for 
six guineas—perhaps five hundred dollars in today’s money—or more than gold. 

    At first, soldiers were called on to provide the raw material, but such an arrangement was 
hardly conducive to industrial-scale production. In the 1750s a Swedish chemist named Karl 
(or Carl) Scheele devised a way to manufacture phosphorus in bulk without the slop or smell 
of urine. It was largely because of this mastery of phosphorus that Sweden became, and 
remains, a leading producer of matches. 

    Scheele was both an extraordinary and extraordinarily luckless fellow. A poor pharmacist 
with little in the way of advanced apparatus, he discovered eight elements—chlorine, fluorine, 
manganese, barium, molybdenum, tungsten, nitrogen, and oxygen—and got credit for none of 
them. In every case, his finds were either overlooked or made it into publication after 
someone else had made the same discovery independently. He also discovered many useful 
compounds, among them ammonia, glycerin, and tannic acid, and was the first to see the 
commercial potential of chlorine as a bleach—all breakthroughs that made other people 
extremely wealthy. 

    Scheele’s one notable shortcoming was a curious insistence on tasting a little of everything 
he worked with, including such notoriously disagreeable substances as mercury, prussic acid 
(another of his discoveries), and hydrocyanic acid—a compound so famously poisonous that 
150 years later Erwin Schrödinger chose it as his toxin of choice in a famous thought 
experiment (see page 146). Scheele’s rashness eventually caught up with him. In 1786, aged 
just forty-three, he was found dead at his workbench surrounded by an array of toxic 
chemicals, any one of which could have accounted for the stunned and terminal look on his 
face. 

    Were the world just and Swedish-speaking, Scheele would have enjoyed universal acclaim. 
Instead credit has tended to lodge with more celebrated chemists, mostly from the English-
speaking world. Scheele discovered oxygen in 1772, but for various heartbreakingly 



complicated reasons could not get his paper published in a timely manner. Instead credit went 
to Joseph Priestley, who discovered the same element independently, but latterly, in the 
summer of 1774. Even more remarkable was Scheele’s failure to receive credit for the 
discovery of chlorine. Nearly all textbooks still attribute chlorine’s discovery to Humphry 
Davy, who did indeed find it, but thirty-six years after Scheele had. 

    Although chemistry had come a long way in the century that separated Newton and Boyle 
from Scheele and Priestley and Henry Cavendish, it still had a long way to go. Right up to the 
closing years of the eighteenth century (and in Priestley’s case a little beyond) scientists 
everywhere searched for, and sometimes believed they had actually found, things that just 
weren’t there: vitiated airs, dephlogisticated marine acids, phloxes, calxes, terraqueous 
exhalations, and, above all, phlogiston, the substance that was thought to be the active agent 
in combustion. Somewhere in all this, it was thought, there also resided a mysterious élan 
vital, the force that brought inanimate objects to life. No one knew where this ethereal essence 
lay, but two things seemed probable: that you could enliven it with a jolt of electricity (a 
notion Mary Shelley exploited to full effect in her novel Frankenstein ) and that it existed in 
some substances but not others, which is why we ended up with two branches of chemistry: 
organic (for those substances that were thought to have it) and inorganic (for those that did 
not). 

    Someone of insight was needed to thrust chemistry into the modern age, and it was the 
French who provided him. His name was Antoine-Laurent Lavoisier. Born in 1743, Lavoisier 
was a member of the minor nobility (his father had purchased a title for the family). In 1768, 
he bought a practicing share in a deeply despised institution called the Ferme Générale (or 
General Farm), which collected taxes and fees on behalf of the government. Although 
Lavoisier himself was by all accounts mild and fair-minded, the company he worked for was 
neither. For one thing, it did not tax the rich but only the poor, and then often arbitrarily. For 
Lavoisier, the appeal of the institution was that it provided him with the wealth to follow his 
principal devotion, science. At his peak, his personal earnings reached 150,000 livres a year—
perhaps $20 million in today’s money. 

    Three years after embarking on this lucrative career path, he married the fourteen-year-old 
daughter of one of his bosses. The marriage was a meeting of hearts and minds both. Madame 
Lavoisier had an incisive intellect and soon was working productively alongside her husband. 
Despite the demands of his job and busy social life, they managed to put in five hours of 
science on most days—two in the early morning and three in the evening—as well as the 
whole of Sunday, which they called their jour de bonheur (day of happiness). Somehow 
Lavoisier also found the time to be commissioner of gunpowder, supervise the building of a 
wall around Paris to deter smugglers, help found the metric system, and coauthor the 
handbook Méthode de Nomenclature Chimique , which became the bible for agreeing on the 
names of the elements. 

    As a leading member of the Académie Royale des Sciences, he was also required to take an 
informed and active interest in whatever was topical—hypnotism, prison reform, the 
respiration of insects, the water supply of Paris. It was in such a capacity in 1780 that 
Lavoisier made some dismissive remarks about a new theory of combustion that had been 
submitted to the academy by a hopeful young scientist. The theory was indeed wrong, but the 
scientist never forgave him. His name was Jean-Paul Marat. 

    The one thing Lavoisier never did was discover an element. At a time when it seemed as if 
almost anybody with a beaker, a flame, and some interesting powders could discover 



something new—and when, not incidentally, some two-thirds of the elements were yet to be 
found—Lavoisier failed to uncover a single one. It certainly wasn’t for want of beakers. 
Lavoisier had thirteen thousand of them in what was, to an almost preposterous degree, the 
finest private laboratory in existence. 

    Instead he took the discoveries of others and made sense of them. He threw out phlogiston 
and mephitic airs. He identified oxygen and hydrogen for what they were and gave them both 
their modern names. In short, he helped to bring rigor, clarity, and method to chemistry. 

    And his fancy equipment did in fact come in very handy. For years, he and Madame 
Lavoisier occupied themselves with extremely exacting studies requiring the finest 
measurements. They determined, for instance, that a rusting object doesn’t lose weight, as 
everyone had long assumed, but gains weight—an extraordinary discovery. Somehow as it 
rusted the object was attracting elemental particles from the air. It was the first realization that 
matter can be transformed but not eliminated. If you burned this book now, its matter would 
be changed to ash and smoke, but the net amount of stuff in the universe would be the same. 
This became known as the conservation of mass, and it was a revolutionary concept. 
Unfortunately, it coincided with another type of revolution—the French one—and for this one 
Lavoisier was entirely on the wrong side. 

    Not only was he a member of the hated Ferme Générale, but he had enthusiastically built 
the wall that enclosed Paris—an edifice so loathed that it was the first thing attacked by the 
rebellious citizens. Capitalizing on this, in 1791 Marat, now a leading voice in the National 
Assembly, denounced Lavoisier and suggested that it was well past time for his hanging. 
Soon afterward the Ferme Générale was shut down. Not long after this Marat was murdered 
in his bath by an aggrieved young woman named Charlotte Corday, but by this time it was too 
late for Lavoisier. 

    In 1793, the Reign of Terror, already intense, ratcheted up to a higher gear. In October 
Marie Antoinette was sent to the guillotine. The following month, as Lavoisier and his wife 
were making tardy plans to slip away to Scotland, Lavoisier was arrested. In May he and 
thirty-one fellow farmers-general were brought before the Revolutionary Tribunal (in a 
courtroom presided over by a bust of Marat). Eight were granted acquittals, but Lavoisier and 
the others were taken directly to the Place de la Revolution (now the Place de la Concorde), 
site of the busiest of French guillotines. Lavoisier watched his father-in-law beheaded, then 
stepped up and accepted his fate. Less than three months later, on July 27, Robespierre 
himself was dispatched in the same way and in the same place, and the Reign of Terror 
swiftly ended. 

    A hundred years after his death, a statue of Lavoisier was erected in Paris and much 
admired until someone pointed out that it looked nothing like him. Under questioning the 
sculptor admitted that he had used the head of the mathematician and philosopher the Marquis 
de Condorcet—apparently he had a spare—in the hope that no one would notice or, having 
noticed, would care. In the second regard he was correct. The statue of Lavoisier-cum-
Condorcet was allowed to remain in place for another half century until the Second World 
War when, one morning, it was taken away and melted down for scrap. 

  

    In the early 1800s there arose in England a fashion for inhaling nitrous oxide, or laughing 
gas, after it was discovered that its use “was attended by a highly pleasurable thrilling.” For 



the next half century it would be the drug of choice for young people. One learned body, the 
Askesian Society, was for a time devoted to little else. Theaters put on “laughing gas 
evenings” where volunteers could refresh themselves with a robust inhalation and then 
entertain the audience with their comical staggerings. 

    It wasn’t until 1846 that anyone got around to finding a practical use for nitrous oxide, as 
an anesthetic. Goodness knows how many tens of thousands of people suffered unnecessary 
agonies under the surgeon’s knife because no one thought of the gas’s most obvious practical 
application. 

    I mention this to make the point that chemistry, having come so far in the eighteenth 
century, rather lost its bearings in the first decades of the nineteenth, in much the way that 
geology would in the early years of the twentieth. Partly it was to do with the limitations of 
equipment—there were, for instance, no centrifuges until the second half of the century, 
severely restricting many kinds of experiments—and partly it was social. Chemistry was, 
generally speaking, a science for businesspeople, for those who worked with coal and potash 
and dyes, and not gentlemen, who tended to be drawn to geology, natural history, and physics. 
(This was slightly less true in continental Europe than in Britain, but only slightly.) It is 
perhaps telling that one of the most important observations of the century, Brownian motion, 
which established the active nature of molecules, was made not by a chemist but by a Scottish 
botanist, Robert Brown. (What Brown noticed, in 1827, was that tiny grains of pollen 
suspended in water remained indefinitely in motion no matter how long he gave them to 
settle. The cause of this perpetual motion—namely the actions of invisible molecules—was 
long a mystery.) 

    Things might have been worse had it not been for a splendidly improbable character named 
Count von Rumford, who, despite the grandeur of his title, began life in Woburn, 
Massachusetts, in 1753 as plain Benjamin Thompson. Thompson was dashing and ambitious, 
“handsome in feature and figure,” occasionally courageous and exceedingly bright, but 
untroubled by anything so inconveniencing as a scruple. At nineteen he married a rich widow 
fourteen years his senior, but at the outbreak of revolution in the colonies he unwisely sided 
with the loyalists, for a time spying on their behalf. In the fateful year of 1776, facing arrest 
“for lukewarmness in the cause of liberty,” he abandoned his wife and child and fled just 
ahead of a mob of anti-Royalists armed with buckets of hot tar, bags of feathers, and an 
earnest desire to adorn him with both. 

    He decamped first to England and then to Germany, where he served as a military advisor 
to the government of Bavaria, so impressing the authorities that in 1791 he was named Count 
von Rumford of the Holy Roman Empire. While in Munich, he also designed and laid out the 
famous park known as the English Garden. 

    In between these undertakings, he somehow found time to conduct a good deal of solid 
science. He became the world’s foremost authority on thermodynamics and the first to 
elucidate the principles of the convection of fluids and the circulation of ocean currents. He 
also invented several useful objects, including a drip coffeemaker, thermal underwear, and a 
type of range still known as the Rumford fireplace. In 1805, during a sojourn in France, he 
wooed and married Madame Lavoisier, widow of Antoine-Laurent. The marriage was not a 
success and they soon parted. Rumford stayed on in France, where he died, universally 
esteemed by all but his former wives, in 1814. 



    But our purpose in mentioning him here is that in 1799, during a comparatively brief 
interlude in London, he founded the Royal Institution, yet another of the many learned 
societies that popped into being all over Britain in the late eighteenth and early nineteenth 
centuries. For a time it was almost the only institution of standing to actively promote the 
young science of chemistry, and that was thanks almost entirely to a brilliant young man 
named Humphry Davy, who was appointed the institution’s professor of chemistry shortly 
after its inception and rapidly gained fame as an outstanding lecturer and productive 
experimentalist. 

    Soon after taking up his position, Davy began to bang out new elements one after 
another—potassium, sodium, magnesium, calcium, strontium, and aluminum or aluminium, 
depending on which branch of English you favor.1 He discovered so many elements not so 
much because he was serially astute as because he developed an ingenious technique of 
applying electricity to a molten substance—electrolysis, as it is known. Altogether he 
discovered a dozen elements, a fifth of the known total of his day. Davy might have done far 
more, but unfortunately as a young man he developed an abiding attachment to the buoyant 
pleasures of nitrous oxide. He grew so attached to the gas that he drew on it (literally) three or 
four times a day. Eventually, in 1829, it is thought to have killed him. 

    Fortunately more sober types were at work elsewhere. In 1808, a dour Quaker named John 
Dalton became the first person to intimate the nature of an atom (progress that will be 
discussed more completely a little further on), and in 1811 an Italian with the splendidly 
operatic name of Lorenzo Romano Amadeo Carlo Avogadro, Count of Quarequa and Cerreto, 
made a discovery that would prove highly significant in the long term—namely, that two 
equal volumes of gases of any type, if kept at the same pressure and temperature, will contain 
identical numbers of molecules. 

    Two things were notable about Avogadro’s Principle, as it became known. First, it 
provided a basis for more accurately measuring the size and weight of atoms. Using 
Avogadro’s mathematics, chemists were eventually able to work out, for instance, that a 
typical atom had a diameter of 0.00000008 centimeters, which is very little indeed. And 
second, almost no one knew about Avogadro’s appealingly simple principle for almost fifty 
years.2  

    Partly this was because Avogadro himself was a retiring fellow—he worked alone, 
corresponded very little with fellow scientists, published few papers, and attended no 
meetings—but also it was because there were no meetings to attend and few chemical 
journals in which to publish. This is a fairly extraordinary fact. The Industrial Revolution was 

                                                 
1 The confusion over the aluminum/aluminium spelling arose b cause of some uncharacteristic indecisiveness on 
Davy's part. When he first isolated the element in 1808, he called it alumium. For son reason he thought better of 
that and changed it to aluminum four years later. Americans dutifully adopted the new term, but mai British 
users disliked aluminum, pointing out that it disrupted the -ium pattern established by sodium, calcium, and 
strontium, so they added a vowel and syllable. 
2 The principle led to the much later adoption of Avogadro's number, a basic unit of measure in chemistry, which 
was named for Avogadro long after his death. It is the number of molecules found in 2.016 grams of hydrogen 
gas (or an equal volume of any other gas). Its value is placed at 6.0221367 x 1023, which is an enormously large 
number. Chemistry students have long amused themselves by computing just how large a number it is, so I can 
report that it is equivalent to the number of popcorn kernels needed to cover the United States to a depth of nine 
miles, or cupfuls of water in the Pacific Ocean, or soft drink cans that would, evenly stacked, cover the Earth to a 
depth of 200 miles. An equivalent number of American pennies would be enough to make every person on Earth 
a dollar trillionaire. It is a big number. 



driven in large part by developments in chemistry, and yet as an organized science chemistry 
barely existed for decades. 

    The Chemical Society of London was not founded until 1841 and didn’t begin to produce a 
regular journal until 1848, by which time most learned societies in Britain—Geological, 
Geographical, Zoological, Horticultural, and Linnaean (for naturalists and botanists)—were at 
least twenty years old and often much more. The rival Institute of Chemistry didn’t come into 
being until 1877, a year after the founding of the American Chemical Society. Because 
chemistry was so slow to get organized, news of Avogadro’s important breakthrough of 1811 
didn’t begin to become general until the first international chemistry congress, in Karlsruhe, 
in 1860. 

    Because chemists for so long worked in isolation, conventions were slow to emerge. Until 
well into the second half of the century, the formula H2O2might mean water to one chemist 
but hydrogen peroxide to another. C2H4could signify ethylene or marsh gas. There was hardly 
a molecule that was uniformly represented everywhere. 

    Chemists also used a bewildering variety of symbols and abbreviations, often self-invented. 
Sweden’s J. J. Berzelius brought a much-needed measure of order to matters by decreeing that 
the elements be abbreviated on the basis of their Greek or Latin names, which is why the 
abbreviation for iron is Fe (from the Latin ferrum ) and that for silver is Ag (from the Latin 
argentum ). That so many of the other abbreviations accord with their English names (N for 
nitrogen, O for Oxygen, H for hydrogen, and so on) reflects English’s Latinate nature, not its 
exalted status. To indicate the number of atoms in a molecule, Berzelius employed a 
superscript notation, as in H2O. Later, for no special reason, the fashion became to render the 
number as subscript: H2O. 

    Despite the occasional tidyings-up, chemistry by the second half of the nineteenth century 
was in something of a mess, which is why everybody was so pleased by the rise to 
prominence in 1869 of an odd and crazed-looking professor at the University of St. Petersburg 
named Dmitri Ivanovich Mendeleyev. 

    Mendeleyev (also sometimes spelled Mendeleev or Mendeléef) was born in 1834 at 
Tobolsk, in the far west of Siberia, into a well-educated, reasonably prosperous, and very 
large family—so large, in fact, that history has lost track of exactly how many Mendeleyevs 
there were: some sources say there were fourteen children, some say seventeen. All agree, at 
any rate, that Dmitri was the youngest. Luck was not always with the Mendeleyevs. When 
Dmitri was small his father, the headmaster of a local school, went blind and his mother had 
to go out to work. Clearly an extraordinary woman, she eventually became the manager of a 
successful glass factory. All went well until 1848, when the factory burned down and the 
family was reduced to penury. Determined to get her youngest child an education, the 
indomitable Mrs. Mendeleyev hitchhiked with young Dmitri four thousand miles to St. 
Petersburg—that’s equivalent to traveling from London to Equatorial Guinea—and deposited 
him at the Institute of Pedagogy. Worn out by her efforts, she died soon after. 

    Mendeleyev dutifully completed his studies and eventually landed a position at the local 
university. There he was a competent but not terribly outstanding chemist, known more for 
his wild hair and beard, which he had trimmed just once a year, than for his gifts in the 
laboratory. 



    However, in 1869, at the age of thirty-five, he began to toy with a way to arrange the 
elements. At the time, elements were normally grouped in two ways—either by atomic weight 
(using Avogadro’s Principle) or by common properties (whether they were metals or gases, 
for instance). Mendeleyev’s breakthrough was to see that the two could be combined in a 
single table. 

    As is often the way in science, the principle had actually been anticipated three years 
previously by an amateur chemist in England named John Newlands. He suggested that when 
elements were arranged by weight they appeared to repeat certain properties—in a sense to 
harmonize—at every eighth place along the scale. Slightly unwisely, for this was an idea 
whose time had not quite yet come, Newlands called it the Law of Octaves and likened the 
arrangement to the octaves on a piano keyboard. Perhaps there was something in Newlands’s 
manner of presentation, but the idea was considered fundamentally preposterous and widely 
mocked. At gatherings, droller members of the audience would sometimes ask him if he could 
get his elements to play them a little tune. Discouraged, Newlands gave up pushing the idea 
and soon dropped from view altogether. 

    Mendeleyev used a slightly different approach, placing his elements into groups of seven, 
but employed fundamentally the same principle. Suddenly the idea seemed brilliant and 
wondrously perceptive. Because the properties repeated themselves periodically, the invention 
became known as the periodic table. 

    Mendeleyev was said to have been inspired by the card game known as solitaire in North 
America and patience elsewhere, wherein cards are arranged by suit horizontally and by 
number vertically. Using a broadly similar concept, he arranged the elements in horizontal 
rows called periods and vertical columns called groups. This instantly showed one set of 
relationships when read up and down and another when read from side to side. Specifically, 
the vertical columns put together chemicals that have similar properties. Thus copper sits on 
top of silver and silver sits on top of gold because of their chemical affinities as metals, while 
helium, neon, and argon are in a column made up of gases. (The actual, formal determinant in 
the ordering is something called their electron valences, for which you will have to enroll in 
night classes if you wish an understanding.) The horizontal rows, meanwhile, arrange the 
chemicals in ascending order by the number of protons in their nuclei—what is known as their 
atomic number. 

    The structure of atoms and the significance of protons will come in a following chapter, so 
for the moment all that is necessary is to appreciate the organizing principle: hydrogen has 
just one proton, and so it has an atomic number of one and comes first on the chart; uranium 
has ninety-two protons, and so it comes near the end and has an atomic number of ninety-two. 
In this sense, as Philip Ball has pointed out, chemistry really is just a matter of counting. 
(Atomic number, incidentally, is not to be confused with atomic weight, which is the number 
of protons plus the number of neutrons in a given element.) There was still a great deal that 
wasn’t known or understood. Hydrogen is the most common element in the universe, and yet 
no one would guess as much for another thirty years. Helium, the second most abundant 
element, had only been found the year before—its existence hadn’t even been suspected 
before that—and then not on Earth but in the Sun, where it was found with a spectroscope 
during a solar eclipse, which is why it honors the Greek sun god Helios. It wouldn’t be 
isolated until 1895. Even so, thanks to Mendeleyev’s invention, chemistry was now on a firm 
footing. 



    For most of us, the periodic table is a thing of beauty in the abstract, but for chemists it 
established an immediate orderliness and clarity that can hardly be overstated. “Without a 
doubt, the Periodic Table of the Chemical Elements is the most elegant organizational chart 
ever devised,” wrote Robert E. Krebs in The History and Use of Our Earth’s Chemical 
Elements, and you can find similar sentiments in virtually every history of chemistry in print. 

    Today we have “120 or so” known elements—ninety-two naturally occurring ones plus a 
couple of dozen that have been created in labs. The actual number is slightly contentious 
because the heavy, synthesized elements exist for only millionths of seconds and chemists 
sometimes argue over whether they have really been detected or not. In Mendeleyev’s day 
just sixty-three elements were known, but part of his cleverness was to realize that the 
elements as then known didn’t make a complete picture, that many pieces were missing. His 
table predicted, with pleasing accuracy, where new elements would slot in when they were 
found. 

    No one knows, incidentally, how high the number of elements might go, though anything 
beyond 168 as an atomic weight is considered “purely speculative,” but what is certain is that 
anything that is found will fit neatly into Mendeleyev’s great scheme. 

  

    The nineteenth century held one last great surprise for chemists. It began in 1896 when 
Henri Becquerel in Paris carelessly left a packet of uranium salts on a wrapped photographic 
plate in a drawer. When he took the plate out some time later, he was surprised to discover 
that the salts had burned an impression in it, just as if the plate had been exposed to light. The 
salts were emitting rays of some sort. 

    Considering the importance of what he had found, Becquerel did a very strange thing: he 
turned the matter over to a graduate student for investigation. Fortunately the student was a 
recent émigré from Poland named Marie Curie. Working with her new husband, Pierre, Curie 
found that certain kinds of rocks poured out constant and extraordinary amounts of energy, 
yet without diminishing in size or changing in any detectable way. What she and her husband 
couldn’t know—what no one could know until Einstein explained things the following 
decade—was that the rocks were converting mass into energy in an exceedingly efficient way. 
Marie Curie dubbed the effect “radioactivity.” In the process of their work, the Curies also 
found two new elements—polonium, which they named after her native country, and radium. 
In 1903 the Curies and Becquerel were jointly awarded the Nobel Prize in physics. (Marie 
Curie would win a second prize, in chemistry, in 1911, the only person to win in both 
chemistry and physics.) 

    At McGill University in Montreal the young New Zealand–born Ernest Rutherford became 
interested in the new radioactive materials. With a colleague named Frederick Soddy he 
discovered that immense reserves of energy were bound up in these small amounts of matter, 
and that the radioactive decay of these reserves could account for most of the Earth’s warmth. 
They also discovered that radioactive elements decayed into other elements—that one day 
you had an atom of uranium, say, and the next you had an atom of lead. This was truly 
extraordinary. It was alchemy, pure and simple; no one had ever imagined that such a thing 
could happen naturally and spontaneously. 

    Ever the pragmatist, Rutherford was the first to see that there could be a valuable practical 
application in this. He noticed that in any sample of radioactive material, it always took the 



same amount of time for half the sample to decay—the celebrated half-life—and that this 
steady, reliable rate of decay could be used as a kind of clock. By calculating backwards from 
how much radiation a material had now and how swiftly it was decaying, you could work out 
its age. He tested a piece of pitchblende, the principal ore of uranium, and found it to be 700 
million years old—very much older than the age most people were prepared to grant the 
Earth. 

    In the spring of 1904, Rutherford traveled to London to give a lecture at the Royal 
Institution—the august organization founded by Count von Rumford only 105 years before, 
though that powdery and periwigged age now seemed a distant eon compared with the roll-
your-sleeves-up robustness of the late Victorians. Rutherford was there to talk about his new 
disintegration theory of radioactivity, as part of which he brought out his piece of pitchblende. 
Tactfully—for the aging Kelvin was present, if not always fully awake—Rutherford noted 
that Kelvin himself had suggested that the discovery of some other source of heat would 
throw his calculations out. Rutherford had found that other source. Thanks to radioactivity the 
Earth could be—and self-evidently was—much older than the twenty-four million years 
Kelvin’s calculations allowed. 

    Kelvin beamed at Rutherford’s respectful presentation, but was in fact unmoved. He never 
accepted the revised figures and to his dying day believed his work on the age of the Earth his 
most astute and important contribution to science—far greater than his work on 
thermodynamics. 

    As with most scientific revolutions, Rutherford’s new findings were not universally 
accepted. John Joly of Dublin strenuously insisted well into the 1930s that the Earth was no 
more than eighty-nine million years old, and was stopped only then by his own death. Others 
began to worry that Rutherford had now given them too much time. But even with 
radiometric dating, as decay measurements became known, it would be decades before we got 
within a billion years or so of Earth’s actual age. Science was on the right track, but still way 
out. 

    Kelvin died in 1907. That year also saw the death of Dmitri Mendeleyev. Like Kelvin, his 
productive work was far behind him, but his declining years were notably less serene. As he 
aged, Mendeleyev became increasingly eccentric—he refused to acknowledge the existence 
of radiation or the electron or anything else much that was new—and difficult. His final 
decades were spent mostly storming out of labs and lecture halls all across Europe. In 1955, 
element 101 was named mendelevium in his honor. “Appropriately,” notes Paul Strathern, “it 
is an unstable element.” 

    Radiation, of course, went on and on, literally and in ways nobody expected. In the early 
1900s Pierre Curie began to experience clear signs of radiation sickness—notably dull aches 
in his bones and chronic feelings of malaise—which doubtless would have progressed 
unpleasantly. We shall never know for certain because in 1906 he was fatally run over by a 
carriage while crossing a Paris street. 

    Marie Curie spent the rest of her life working with distinction in the field, helping to found 
the celebrated Radium Institute of the University of Paris in 1914. Despite her two Nobel 
Prizes, she was never elected to the Academy of Sciences, in large part because after the death 
of Pierre she conducted an affair with a married physicist that was sufficiently indiscreet to 
scandalize even the French—or at least the old men who ran the academy, which is perhaps 
another matter. 



    For a long time it was assumed that anything so miraculously energetic as radioactivity 
must be beneficial. For years, manufacturers of toothpaste and laxatives put radioactive 
thorium in their products, and at least until the late 1920s the Glen Springs Hotel in the Finger 
Lakes region of New York (and doubtless others as well) featured with pride the therapeutic 
effects of its “Radioactive mineral springs.” Radioactivity wasn’t banned in consumer 
products until 1938. By this time it was much too late for Madame Curie, who died of 
leukemia in 1934. Radiation, in fact, is so pernicious and long lasting that even now her 
papers from the 1890s—even her cookbooks—are too dangerous to handle. Her lab books are 
kept in lead-lined boxes, and those who wish to see them must don protective clothing. 

    Thanks to the devoted and unwittingly high-risk work of the first atomic scientists, by the 
early years of the twentieth century it was becoming clear that Earth was unquestionably 
venerable, though another half century of science would have to be done before anyone could 
confidently say quite how venerable. Science, meanwhile, was about to get a new age of its 
own—the atomic one. 

 

 



 

 

PART  III   A NEW AGE DAWNS 

 

 

 

 

A Physicist is the atoms’ way of thinking about atoms. 

   -Anonymous 

 



8    EINSTEIN’S UNIVERSE 

 

 

AS THE NINETEENTH century drew to a close, scientists could reflect with satisfaction that 
they had pinned down most of the mysteries of the physical world: electricity, magnetism, 
gases, optics, acoustics, kinetics, and statistical mechanics, to name just a few, all had fallen 
into order before them. They had discovered the X ray, the cathode ray, the electron, and 
radioactivity, invented the ohm, the watt, the Kelvin, the joule, the amp, and the little erg. 

    If a thing could be oscillated, accelerated, perturbed, distilled, combined, weighed, or made 
gaseous they had done it, and in the process produced a body of universal laws so weighty 
and majestic that we still tend to write them out in capitals: the Electromagnetic Field Theory 
of Light, Richter’s Law of Reciprocal Proportions, Charles’s Law of Gases, the Law of 
Combining Volumes, the Zeroth Law, the Valence Concept, the Laws of Mass Actions, and 
others beyond counting. The whole world clanged and chuffed with the machinery and 
instruments that their ingenuity had produced. Many wise people believed that there was 
nothing much left for science to do. 

    In 1875, when a young German in Kiel named Max Planck was deciding whether to devote 
his life to mathematics or to physics, he was urged most heartily not to choose physics 
because the breakthroughs had all been made there. The coming century, he was assured, 
would be one of consolidation and refinement, not revolution. Planck didn’t listen. He studied 
theoretical physics and threw himself body and soul into work on entropy, a process at the 
heart of thermodynamics, which seemed to hold much promise for an ambitious young man.1 
In 1891 he produced his results and learned to his dismay that the important work on entropy 
had in fact been done already, in this instance by a retiring scholar at Yale University named 
J. Willard Gibbs. 

    Gibbs is perhaps the most brilliant person that most people have never heard of. Modest to 
the point of near invisibility, he passed virtually the whole of his life, apart from three years 
spent studying in Europe, within a three-block area bounded by his house and the Yale 
campus in New Haven, Connecticut. For his first ten years at Yale he didn’t even bother to 
draw a salary. (He had independent means.) From 1871, when he joined the university as a 
professor, to his death in 1903, his courses attracted an average of slightly over one student a 
semester. His written work was difficult to follow and employed a private form of notation 
that many found incomprehensible. But buried among his arcane formulations were insights 
of the loftiest brilliance. 

    In 1875–78, Gibbs produced a series of papers, collectively titledOn the Equilibrium of 
Heterogeneous Substances , that dazzlingly elucidated the thermodynamic principles of, well, 

                                                 
1 Specifically it is a measure of randomness or disorder in a system. Darrell Ebbing, in the textbook General 
Chemistry, very usefully suggests thinking of a deck of cards. A new pack fresh out of the box, arranged by suit 
and in sequence from ace to king, can be said to be in its ordered state. Shuffle the cards and you put them in a 
disordered state. Entropy is a way of measuring just how disordered that state is and of determining the 
likelihood of particular outcomes with further shuffles. Of course, if you wish to have any observations 
published in a respectable journal you will need also to understand additional concepts such as thermal 
nonuniformities, lattice distances, and stoichiometric relationships, but that's the general idea. 
 



nearly everything—“gases, mixtures, surfaces, solids, phase changes . . . chemical reactions, 
electrochemical cells, sedimentation, and osmosis,” to quote William H. Cropper. In essence 
what Gibbs did was show that thermodynamics didn’t apply simply to heat and energy at the 
sort of large and noisy scale of the steam engine, but was also present and influential at the 
atomic level of chemical reactions. Gibbs’s Equilibrium has been called “the Principia of 
thermodynamics,” but for reasons that defy speculation Gibbs chose to publish these 
landmark observations in the Transactions of the Connecticut Academy of Arts and Sciences, 
a journal that managed to be obscure even in Connecticut, which is why Planck did not hear 
of him until too late. 

    Undaunted—well, perhaps mildly daunted—Planck turned to other matters.2 We shall turn 
to these ourselves in a moment, but first we must make a slight (but relevant!) detour to 
Cleveland, Ohio, and an institution then known as the Case School of Applied Science. There, 
in the 1880s, a physicist of early middle years named Albert Michelson, assisted by his friend 
the chemist Edward Morley, embarked on a series of experiments that produced curious and 
disturbing results that would have great ramifications for much of what followed. 

    What Michelson and Morley did, without actually intending to, was undermine a 
longstanding belief in something called the luminiferous ether, a stable, invisible, weightless, 
frictionless, and unfortunately wholly imaginary medium that was thought to permeate the 
universe. Conceived by Descartes, embraced by Newton, and venerated by nearly everyone 
ever since, the ether held a position of absolute centrality in nineteenth-century physics as a 
way of explaining how light traveled across the emptiness of space. It was especially needed 
in the 1800s because light and electromagnetism were now seen as waves, which is to say 
types of vibrations. Vibrations must occur in something; hence the need for, and lasting 
devotion to, an ether. As late as 1909, the great British physicist J. J. Thomson was insisting: 
“The ether is not a fantastic creation of the speculative philosopher; it is as essential to us as 
the air we breathe”—this more than four years after it was pretty incontestably established 
that it didn’t exist. People, in short, were really attached to the ether. 

    If you needed to illustrate the idea of nineteenth-century America as a land of opportunity, 
you could hardly improve on the life of Albert Michelson. Born in 1852 on the German–
Polish border to a family of poor Jewish merchants, he came to the United States with his 
family as an infant and grew up in a mining camp in California’s gold rush country, where his 
father ran a dry goods business. Too poor to pay for college, he traveled to Washington, D.C., 
and took to loitering by the front door of the White House so that he could fall in beside 
President Ulysses S. Grant when the President emerged for his daily constitutional. (It was 
clearly a more innocent age.) In the course of these walks, Michelson so ingratiated himself to 
the President that Grant agreed to secure for him a free place at the U.S. Naval Academy. It 
was there that Michelson learned his physics. 

    Ten years later, by now a professor at the Case School in Cleveland, Michelson became 
interested in trying to measure something called the ether drift—a kind of head wind 
produced by moving objects as they plowed through space. One of the predictions of 
Newtonian physics was that the speed of light as it pushed through the ether should vary with 

                                                 
2 Planck was often unlucky in life. His beloved first wife died early, in 1909, and the younger of his two sons 
was killed in the First World War. He also had twin daughters whom he adored. One died giving birth. The 
surviving twin went to look after the baby and fell in love with her sister's husband. They married and two years 
later she died in childbirth. In 1944, when Planck was eighty-five, an Allied bomb fell on his house and he lost 
everything-papers, diaries, a lifetime of accumulations. The following year his surviving son was caught in a 
conspiracy to assassinate Hitler and executed. 



respect to an observer depending on whether the observer was moving toward the source of 
light or away from it, but no one had figured out a way to measure this. It occurred to 
Michelson that for half the year the Earth is traveling toward the Sun and for half the year it is 
moving away from it, and he reasoned that if you took careful enough measurements at 
opposite seasons and compared light’s travel time between the two, you would have your 
answer. 

    Michelson talked Alexander Graham Bell, newly enriched inventor of the telephone, into 
providing the funds to build an ingenious and sensitive instrument of Michelson’s own 
devising called an interferometer, which could measure the velocity of light with great 
precision. Then, assisted by the genial but shadowy Morley, Michelson embarked on years of 
fastidious measurements. The work was delicate and exhausting, and had to be suspended for 
a time to permit Michelson a brief but comprehensive nervous breakdown, but by 1887 they 
had their results. They were not at all what the two scientists had expected to find. 

    As Caltech astrophysicist Kip S. Thorne has written: “The speed of light turned out to be 
the same inall directions and at all seasons.” It was the first hint in two hundred years—in 
exactly two hundred years, in fact—that Newton’s laws might not apply all the time 
everywhere. The Michelson-Morley outcome became, in the words of William H. Cropper, 
“probably the most famous negative result in the history of physics.” Michelson was awarded 
a Nobel Prize in physics for the work—the first American so honored—but not for twenty 
years. Meanwhile, the Michelson-Morley experiments would hover unpleasantly, like a musty 
smell, in the background of scientific thought. 

    Remarkably, and despite his findings, when the twentieth century dawned Michelson 
counted himself among those who believed that the work of science was nearly at an end, 
with “only a few turrets and pinnacles to be added, a few roof bosses to be carved,” in the 
words of a writer in Nature. 

    In fact, of course, the world was about to enter a century of science where many people 
wouldn’t understand anything and none would understand everything. Scientists would soon 
find themselves adrift in a bewildering realm of particles and antiparticles, where things pop 
in and out of existence in spans of time that make nanoseconds look plodding and uneventful, 
where everything is strange. Science was moving from a world of macrophysics, where 
objects could be seen and held and measured, to one of microphysics, where events transpire 
with unimaginable swiftness on scales far below the limits of imagining. We were about to 
enter the quantum age, and the first person to push on the door was the so-far unfortunate 
Max Planck. 

    In 1900, now a theoretical physicist at the University of Berlin and at the somewhat 
advanced age of forty-two, Planck unveiled a new “quantum theory,” which posited that 
energy is not a continuous thing like flowing water but comes in individualized packets, 
which he called quanta. This was a novel concept, and a good one. In the short term it would 
help to provide a solution to the puzzle of the Michelson-Morley experiments in that it 
demonstrated that light needn’t be a wave after all. In the longer term it would lay the 
foundation for the whole of modern physics. It was, at all events, the first clue that the world 
was about to change. 

    But the landmark event—the dawn of a new age—came in 1905, when there appeared in 
the German physics journal Annalen der Physik a series of papers by a young Swiss 
bureaucrat who had no university affiliation, no access to a laboratory, and the regular use of 



no library greater than that of the national patent office in Bern, where he was employed as a 
technical examiner third class. (An application to be promoted to technical examiner second 
class had recently been rejected.) 

    His name was Albert Einstein, and in that one eventful year he submitted to Annalen der 
Physik five papers, of which three, according to C. P. Snow, “were among the greatest in the 
history of physics”—one examining the photoelectric effect by means of Planck’s new 
quantum theory, one on the behavior of small particles in suspension (what is known as 
Brownian motion), and one outlining a special theory of relativity. 

    The first won its author a Nobel Prize and explained the nature of light (and also helped to 
make television possible, among other things).3 The second provided proof that atoms do 
indeed exist—a fact that had, surprisingly, been in some dispute. The third merely changed 
the world. 

  

    Einstein was born in Ulm, in southern Germany, in 1879, but grew up in Munich. Little in 
his early life suggested the greatness to come. Famously he didn’t learn to speak until he was 
three. In the 1890s, his father’s electrical business failing, the family moved to Milan, but 
Albert, by now a teenager, went to Switzerland to continue his education—though he failed 
his college entrance exams on the first try. In 1896 he gave up his German citizenship to 
avoid military conscription and entered the Zurich Polytechnic Institute on a four-year course 
designed to churn out high school science teachers. He was a bright but not outstanding 
student. 

    In 1900 he graduated and within a few months was beginning to contribute papers to 
Annalen der Physik. His very first paper, on the physics of fluids in drinking straws (of all 
things), appeared in the same issue as Planck’s quantum theory. From 1902 to 1904 he 
produced a series of papers on statistical mechanics only to discover that the quietly 
productive J. Willard Gibbs in Connecticut had done that work as well, in his Elementary 
Principles of Statistical Mechanics of 1901. 

    At the same time he had fallen in love with a fellow student, a Hungarian named Mileva 
Maric. In 1901 they had a child out of wedlock, a daughter, who was discreetly put up for 
adoption. Einstein never saw his child. Two years later, he and Maric were married. In 
between these events, in 1902, Einstein took a job with the Swiss patent office, where he 
stayed for the next seven years. He enjoyed the work: it was challenging enough to engage his 
mind, but not so challenging as to distract him from his physics. This was the background 
against which he produced the special theory of relativity in 1905. 

    Called “On the Electrodynamics of Moving Bodies,” it is one of the most extraordinary 
scientific papers ever published, as much for how it was presented as for what it said. It had 
no footnotes or citations, contained almost no mathematics, made no mention of any work 
that had influenced or preceded it, and acknowledged the help of just one individual, a 

                                                 
3 Einstein was honored, somewhat vaguely, "for services to theoretical physics." He had to wait sixteen years, till 
1921, to receive the award-quite a long time, all things considered, but nothing at all compared with Frederick 
Reines, who detected the neutrino in 1957 but wasn't honored with a Nobel until 1995, thirty-eight years later, or 
the German Ernst Ruska, who invented the electron microscope in 1932 and received his Nobel Prize in 1986, 
more than half a century after the fact. Since Nobel Prizes are never awarded posthumously, longevity can be as 
important a factor as ingenuity for prizewinners. 



colleague at the patent office named Michele Besso. It was, wrote C. P. Snow, as if Einstein 
“had reached the conclusions by pure thought, unaided, without listening to the opinions of 
others. To a surprisingly large extent, that is precisely what he had done.” 

    His famous equation, E =mc2, did not appear with the paper, but came in a brief supplement 
that followed a few months later. As you will recall from school days, E in the equation stands 
for energy, m for mass, and c2 for the speed of light squared. 

    In simplest terms, what the equation says is that mass and energy have an equivalence. 
They are two forms of the same thing: energy is liberated matter; matter is energy waiting to 
happen. Since c2 (the speed of light times itself) is a truly enormous number, what the 
equation is saying is that there is a huge amount—a really huge amount—of energy bound up 
in every material thing.4  

    You may not feel outstandingly robust, but if you are an average-sized adult you will 
contain within your modest frame no less than 7 x 1018joules of potential energy—enough to 
explode with the force of thirty very large hydrogen bombs, assuming you knew how to 
liberate it and really wished to make a point. Everything has this kind of energy trapped 
within it. We’re just not very good at getting it out. Even a uranium bomb—the most 
energetic thing we have produced yet—releases less than 1 percent of the energy it could 
release if only we were more cunning. 

    Among much else, Einstein’s theory explained how radiation worked: how a lump of 
uranium could throw out constant streams of high-level energy without melting away like an 
ice cube. (It could do it by converting mass to energy extremely efficiently à laE =mc2.) It 
explained how stars could burn for billions of years without racing through their fuel. (Ditto.) 
At a stroke, in a simple formula, Einstein endowed geologists and astronomers with the 
luxury of billions of years. Above all, the special theory showed that the speed of light was 
constant and supreme. Nothing could overtake it. It brought light (no pun intended, exactly) to 
the very heart of our understanding of the nature of the universe. Not incidentally, it also 
solved the problem of the luminiferous ether by making it clear that it didn’t exist. Einstein 
gave us a universe that didn’t need it. 

    Physicists as a rule are not overattentive to the pronouncements of Swiss patent office 
clerks, and so, despite the abundance of useful tidings, Einstein’s papers attracted little notice. 
Having just solved several of the deepest mysteries of the universe, Einstein applied for a job 
as a university lecturer and was rejected, and then as a high school teacher and was rejected 
there as well. So he went back to his job as an examiner third class, but of course he kept 
thinking. He hadn’t even come close to finishing yet. 

  

    When the poet Paul Valéry once asked Einstein if he kept a notebook to record his ideas, 
Einstein looked at him with mild but genuine surprise. “Oh, that’s not necessary,” he replied. 
“It’s so seldom I have one.” I need hardly point out that when he did get one it tended to be 
good. Einstein’s next idea was one of the greatest that anyone has ever had—indeed, the very 
greatest, according to Boorse, Motz, and Weaver in their thoughtful history of atomic science.    
                                                 
4 How c came to be the symbol for the speed of light is something of a mystery, but David Bodanis suggests it 
probably came from the Latin celeritas, meaning swiftness. The relevant volume of the Oxford English 
Dictionary, compiled a decade before Einstein's theory, recognizes c as a symbol for many things, from carbon 
to cricket, but makes no mention of it as a symbol for light or swiftness. 



“As the creation of a single mind,” they write, “it is undoubtedly the highest intellectual 
achievement of humanity,” which is of course as good as a compliment can get. 

    In 1907, or so it has sometimes been written, Albert Einstein saw a workman fall off a roof 
and began to think about gravity. Alas, like many good stories this one appears to be 
apocryphal. According to Einstein himself, he was simply sitting in a chair when the problem 
of gravity occurred to him. 

    Actually, what occurred to Einstein was something more like the beginning of a solution to 
the problem of gravity, since it had been evident to him from the outset that one thing missing 
from the special theory was gravity. What was “special” about the special theory was that it 
dealt with things moving in an essentially unimpeded state. But what happened when a thing 
in motion—light, above all—encountered an obstacle such as gravity? It was a question that 
would occupy his thoughts for most of the next decade and lead to the publication in early 
1917 of a paper entitled “Cosmological Considerations on the General Theory of Relativity.” 
The special theory of relativity of 1905 was a profound and important piece of work, of 
course, but as C. P. Snow once observed, if Einstein hadn’t thought of it when he did someone 
else would have, probably within five years; it was an idea waiting to happen. But the general 
theory was something else altogether. “Without it,” wrote Snow in 1979, “it is likely that we 
should still be waiting for the theory today.” 

    With his pipe, genially self-effacing manner, and electrified hair, Einstein was too splendid 
a figure to remain permanently obscure, and in 1919, the war over, the world suddenly 
discovered him. Almost at once his theories of relativity developed a reputation for being 
impossible for an ordinary person to grasp. Matters were not helped, as David Bodanis points 
out in his superb book E=mc2 , when the New York Times decided to do a story, and—for 
reasons that can never fail to excite wonder—sent the paper’s golfing correspondent, one 
Henry Crouch, to conduct the interview. 

    Crouch was hopelessly out of his depth, and got nearly everything wrong. Among the more 
lasting errors in his report was the assertion that Einstein had found a publisher daring enough 
to publish a book that only twelve men “in all the world could comprehend.” There was no 
such book, no such publisher, no such circle of learned men, but the notion stuck anyway. 
Soon the number of people who could grasp relativity had been reduced even further in the 
popular imagination—and the scientific establishment, it must be said, did little to disturb the 
myth. 

    When a journalist asked the British astronomer Sir Arthur Eddington if it was true that he 
was one of only three people in the world who could understand Einstein’s relativity theories, 
Eddington considered deeply for a moment and replied: “I am trying to think who the third 
person is.” In fact, the problem with relativity wasn’t that it involved a lot of differential 
equations, Lorentz transformations, and other complicated mathematics (though it did—even 
Einstein needed help with some of it), but that it was just so thoroughly nonintuitive. 

    In essence what relativity says is that space and time are not absolute, but relative to both 
the observer and to the thing being observed, and the faster one moves the more pronounced 
these effects become. We can never accelerate ourselves to the speed of light, and the harder 
we try (and faster we go) the more distorted we will become, relative to an outside observer. 

    Almost at once popularizers of science tried to come up with ways to make these concepts 
accessible to a general audience. One of the more successful attempts—commercially at 



least—was The ABC of Relativity by the mathematician and philosopher Bertrand Russell. In 
it, Russell employed an image that has been used many times since. He asked the reader to 
envision a train one hundred yards long moving at 60 percent of the speed of light. To 
someone standing on a platform watching it pass, the train would appear to be only eighty 
yards long and everything on it would be similarly compressed. If we could hear the 
passengers on the train speak, their voices would sound slurred and sluggish, like a record 
played at too slow a speed, and their movements would appear similarly ponderous. Even the 
clocks on the train would seem to be running at only four-fifths of their normal speed. 

    However—and here’s the thing—people on the train would have no sense of these 
distortions. To them, everything on the train would seem quite normal. It would be we on the 
platform who looked weirdly compressed and slowed down. It is all to do, you see, with your 
position relative to the moving object. 

    This effect actually happens every time you move. Fly across the United States, and you 
will step from the plane a quinzillionth of a second, or something, younger than those you left 
behind. Even in walking across the room you will very slightly alter your own experience of 
time and space. It has been calculated that a baseball thrown at a hundred miles an hour will 
pick up 0.000000000002 grams of mass on its way to home plate. So the effects of relativity 
are real and have been measured. The problem is that such changes are much too small to 
make the tiniest detectable difference to us. But for other things in the universe—light, 
gravity, the universe itself—these are matters of consequence. 

    So if the ideas of relativity seem weird, it is only because we don’t experience these sorts of 
interactions in normal life. However, to turn to Bodanis again, we all commonly encounter 
other kinds of relativity—for instance with regard to sound. If you are in a park and someone 
is playing annoying music, you know that if you move to a more distant spot the music will 
seem quieter. That’s not because the musicis quieter, of course, but simply that your position 
relative to it has changed. To something too small or sluggish to duplicate this experience—a 
snail, say—the idea that a boom box could seem to two observers to produce two different 
volumes of music simultaneously might seem incredible. 

    The most challenging and nonintuitive of all the concepts in the general theory of relativity 
is the idea that time is part of space. Our instinct is to regard time as eternal, absolute, 
immutable—nothing can disturb its steady tick. In fact, according to Einstein, time is variable 
and ever changing. It even has shape. It is bound up—“inextricably interconnected,” in 
Stephen Hawking’s expression—with the three dimensions of space in a curious dimension 
known as spacetime. 

    Spacetime is usually explained by asking you to imagine something flat but pliant—a 
mattress, say, or a sheet of stretched rubber—on which is resting a heavy round object, such 
as an iron ball. The weight of the iron ball causes the material on which it is sitting to stretch 
and sag slightly. This is roughly analogous to the effect that a massive object such as the Sun 
(the iron ball) has on spacetime (the material): it stretches and curves and warps it. Now if 
you roll a smaller ball across the sheet, it tries to go in a straight line as required by Newton’s 
laws of motion, but as it nears the massive object and the slope of the sagging fabric, it rolls 
downward, ineluctably drawn to the more massive object. This is gravity—a product of the 
bending of spacetime. 

    Every object that has mass creates a little depression in the fabric of the cosmos. Thus the 
universe, as Dennis Overbye has put it, is “the ultimate sagging mattress.” Gravity on this 



view is no longer so much a thing as an outcome—“not a ‘force’ but a byproduct of the 
warping of spacetime,” in the words of the physicist Michio Kaku, who goes on: “In some 
sense, gravity does not exist; what moves the planets and stars is the distortion of space and 
time.” 

    Of course the sagging mattress analogy can take us only so far because it doesn’t 
incorporate the effect of time. But then our brains can take us only so far because it is so 
nearly impossible to envision a dimension comprising three parts space to one part time, all 
interwoven like the threads in a plaid fabric. At all events, I think we can agree that this was 
an awfully big thought for a young man staring out the window of a patent office in the 
capital of Switzerland. 

  

    Among much else, Einstein’s general theory of relativity suggested that the universe must 
be either expanding or contracting. But Einstein was not a cosmologist, and he accepted the 
prevailing wisdom that the universe was fixed and eternal. More or less reflexively, he 
dropped into his equations something called the cosmological constant, which arbitrarily 
counterbalanced the effects of gravity, serving as a kind of mathematical pause button. Books 
on the history of science always forgive Einstein this lapse, but it was actually a fairly 
appalling piece of science and he knew it. He called it “the biggest blunder of my life.” 

    Coincidentally, at about the time that Einstein was affixing a cosmological constant to his 
theory, at the Lowell Observatory in Arizona, an astronomer with the cheerily intergalactic 
name of Vesto Slipher (who was in fact from Indiana) was taking spectrographic readings of 
distant stars and discovering that they appeared to be moving away from us. The universe 
wasn’t static. The stars Slipher looked at showed unmistakable signs of a Doppler shift5—the 
same mechanism behind that distinctive stretched-out yee-yummm sound cars make as they 
flash past on a racetrack. The phenomenon also applies to light, and in the case of receding 
galaxies it is known as a red shift (because light moving away from us shifts toward the red 
end of the spectrum; approaching light shifts to blue). 

    Slipher was the first to notice this effect with light and to realize its potential importance 
for understanding the motions of the cosmos. Unfortunately no one much noticed him. The 
Lowell Observatory, as you will recall, was a bit of an oddity thanks to Percival Lowell’s 
obsession with Martian canals, which in the 1910s made it, in every sense, an outpost of 
astronomical endeavor. Slipher was unaware of Einstein’s theory of relativity, and the world 
was equally unaware of Slipher. So his finding had no impact. 

    Glory instead would pass to a large mass of ego named Edwin Hubble. Hubble was born in 
1889, ten years after Einstein, in a small Missouri town on the edge of the Ozarks and grew 
up there and in Wheaton, Illinois, a suburb of Chicago. His father was a successful insurance 
executive, so life was always comfortable, and Edwin enjoyed a wealth of physical 
endowments, too. He was a strong and gifted athlete, charming, smart, and immensely good-
looking—“handsome almost to a fault,” in the description of William H. Cropper, “an 

                                                 
5 Named for Johann Christian Doppler, an Austrian physicist, who first noticed the effect in 1842. Briefly, what 
happens is that as a moving object approaches a stationary one its sound waves become bunched up as they cram 
up against whatever device is receiving them (your ears, say), just as you would expect of anything that is being 
pushed from behind toward an immobile object. This bunching is perceived by the listener as a kind of pinched 
and elevated sound (the yee). As the sound source passes, the sound waves spread out and lengthen, causing the 
pitch to drop abruptly (the yummm). 



Adonis” in the words of another admirer. According to his own accounts, he also managed to 
fit into his life more or less constant acts of valor—rescuing drowning swimmers, leading 
frightened men to safety across the battlefields of France, embarrassing world-champion 
boxers with knockdown punches in exhibition bouts. It all seemed too good to be true. It was. 
For all his gifts, Hubble was also an inveterate liar. 

    This was more than a little odd, for Hubble’s life was filled from an early age with a level 
of distinction that was at times almost ludicrously golden. At a single high school track meet 
in 1906, he won the pole vault, shot put, discus, hammer throw, standing high jump, and 
running high jump, and was on the winning mile-relay team—that is seven first places in one 
meet—and came in third in the broad jump. In the same year, he set a state record for the high 
jump in Illinois. 

    As a scholar he was equally proficient, and had no trouble gaining admission to study 
physics and astronomy at the University of Chicago (where, coincidentally, the head of the 
department was now Albert Michelson). There he was selected to be one of the first Rhodes 
scholars at Oxford. Three years of English life evidently turned his head, for he returned to 
Wheaton in 1913 wearing an Inverness cape, smoking a pipe, and talking with a peculiarly 
orotund accent—not quite British but not quite not—that would remain with him for life. 
Though he later claimed to have passed most of the second decade of the century practicing 
law in Kentucky, in fact he worked as a high school teacher and basketball coach in New 
Albany, Indiana, before belatedly attaining his doctorate and passing briefly through the 
Army. (He arrived in France one month before the Armistice and almost certainly never heard 
a shot fired in anger.) 

    In 1919, now aged thirty, he moved to California and took up a position at the Mount 
Wilson Observatory near Los Angeles. Swiftly, and more than a little unexpectedly, he 
became the most outstanding astronomer of the twentieth century. 

    It is worth pausing for a moment to consider just how little was known of the cosmos at this 
time. Astronomers today believe there are perhaps 140 billion galaxies in the visible universe. 
That’s a huge number, much bigger than merely saying it would lead you to suppose. If 
galaxies were frozen peas, it would be enough to fill a large auditorium—the old Boston 
Garden, say, or the Royal Albert Hall. (An astrophysicist named Bruce Gregory has actually 
computed this.) In 1919, when Hubble first put his head to the eyepiece, the number of these 
galaxies that were known to us was exactly one: the Milky Way. Everything else was thought 
to be either part of the Milky Way itself or one of many distant, peripheral puffs of gas. 
Hubble quickly demonstrated how wrong that belief was. 

    Over the next decade, Hubble tackled two of the most fundamental questions of the 
universe: how old is it, and how big? To answer both it is necessary to know two things—how 
far away certain galaxies are and how fast they are flying away from us (what is known as 
their recessional velocity). The red shift gives the speed at which galaxies are retiring, but 
doesn’t tell us how far away they are to begin with. For that you need what are known as 
“standard candles”—stars whose brightness can be reliably calculated and used as 
benchmarks to measure the brightness (and hence relative distance) of other stars. 

    Hubble’s luck was to come along soon after an ingenious woman named Henrietta Swan 
Leavitt had figured out a way to do so. Leavitt worked at the Harvard College Observatory as 
a computer, as they were known. Computers spent their lives studying photographic plates of 
stars and making computations—hence the name. It was little more than drudgery by another 



name, but it was as close as women could get to real astronomy at Harvard—or indeed pretty 
much anywhere—in those days. The system, however unfair, did have certain unexpected 
benefits: it meant that half the finest minds available were directed to work that would 
otherwise have attracted little reflective attention, and it ensured that women ended up with an 
appreciation of the fine structure of the cosmos that often eluded their male counterparts. 

    One Harvard computer, Annie Jump Cannon, used her repetitive acquaintance with the 
stars to devise a system of stellar classifications so practical that it is still in use today. 
Leavitt’s contribution was even more profound. She noticed that a type of star known as a 
Cepheid variable (after the constellation Cepheus, where it first was identified) pulsated with 
a regular rhythm—a kind of stellar heartbeat. Cepheids are quite rare, but at least one of them 
is well known to most of us. Polaris, the Pole Star, is a Cepheid. 

    We now know that Cepheids throb as they do because they are elderly stars that have 
moved past their “main sequence phase,” in the parlance of astronomers, and become red 
giants. The chemistry of red giants is a little weighty for our purposes here (it requires an 
appreciation for the properties of singly ionized helium atoms, among quite a lot else), but put 
simply it means that they burn their remaining fuel in a way that produces a very rhythmic, 
very reliable brightening and dimming. Leavitt’s genius was to realize that by comparing the 
relative magnitudes of Cepheids at different points in the sky you could work out where they 
were in relation to each other. They could be used as “standard candles”—a term she coined 
and still in universal use. The method provided only relative distances, not absolute distances, 
but even so it was the first time that anyone had come up with a usable way to measure the 
large-scale universe. 

    (Just to put these insights into perspective, it is perhaps worth noting that at the time Leavitt 
and Cannon were inferring fundamental properties of the cosmos from dim smudges on 
photographic plates, the Harvard astronomer William H. Pickering, who could of course peer 
into a first-class telescope as often as he wanted, was developing his seminal theory that dark 
patches on the Moon were caused by swarms of seasonally migrating insects.) 

    Combining Leavitt’s cosmic yardstick with Vesto Slipher’s handy red shifts, Edwin Hubble 
now began to measure selected points in space with a fresh eye. In 1923 he showed that a puff 
of distant gossamer in the Andromeda constellation known as M31 wasn’t a gas cloud at all 
but a blaze of stars, a galaxy in its own right, a hundred thousand light-years across and at 
least nine hundred thousand light-years away. The universe was vaster—vastly vaster—than 
anyone had ever supposed. In 1924 he produced a landmark paper, “Cepheids in Spiral 
Nebulae” (nebulae,from the Latin for “clouds,” was his word for galaxies), showing that the 
universe consisted not just of the Milky Way but of lots of independent galaxies—“island 
universes”—many of them bigger than the Milky Way and much more distant. 

    This finding alone would have ensured Hubble’s reputation, but he now turned to the 
question of working out just how much vaster the universe was, and made an even more 
striking discovery. Hubble began to measure the spectra of distant galaxies—the business that 
Slipher had begun in Arizona. Using Mount Wilson’s new hundred-inch Hooker telescope 
and some clever inferences, he worked out that all the galaxies in the sky (except for our own 
local cluster) are moving away from us. Moreover, their speed and distance were neatly 
proportional: the further away the galaxy, the faster it was moving. 

    This was truly startling. The universe was expanding, swiftly and evenly in all directions. It 
didn’t take a huge amount of imagination to read backwards from this and realize that it must 



therefore have started from some central point. Far from being the stable, fixed, eternal void 
that everyone had always assumed, this was a universe that had a beginning. It might 
therefore also have an end. 

    The wonder, as Stephen Hawking has noted, is that no one had hit on the idea of the 
expanding universe before. A static universe, as should have been obvious to Newton and 
every thinking astronomer since, would collapse in upon itself. There was also the problem 
that if stars had been burning indefinitely in a static universe they’d have made the whole 
intolerably hot—certainly much too hot for the likes of us. An expanding universe resolved 
much of this at a stroke. 

    Hubble was a much better observer than a thinker and didn’t immediately appreciate the 
full implications of what he had found. Partly this was because he was woefully ignorant of 
Einstein’s General Theory of Relativity. This was quite remarkable because, for one thing, 
Einstein and his theory were world famous by now. Moreover, in 1929 Albert Michelson—
now in his twilight years but still one of the world’s most alert and esteemed scientists—
accepted a position at Mount Wilson to measure the velocity of light with his trusty 
interferometer, and must surely have at least mentioned to him the applicability of Einstein’s 
theory to his own findings. 

    At all events, Hubble failed to make theoretical hay when the chance was there. Instead, it 
was left to a Belgian priest-scholar (with a Ph.D. from MIT) named Georges Lemaître to 
bring together the two strands in his own “fireworks theory,” which suggested that the 
universe began as a geometrical point, a “primeval atom,” which burst into glory and had 
been moving apart ever since. It was an idea that very neatly anticipated the modern 
conception of the Big Bang but was so far ahead of its time that Lemaître seldom gets more 
than the sentence or two that we have given him here. The world would need additional 
decades, and the inadvertent discovery of cosmic background radiation by Penzias and Wilson 
at their hissing antenna in New Jersey, before the Big Bang would begin to move from 
interesting idea to established theory. 

    Neither Hubble nor Einstein would be much of a part of that big story. Though no one 
would have guessed it at the time, both men had done about as much as they were ever going 
to do. 

    In 1936 Hubble produced a popular book called The Realm of the Nebulae, which 
explained in flattering style his own considerable achievements. Here at last he showed that 
he had acquainted himself with Einstein’s theory—up to a point anyway: he gave it four pages 
out of about two hundred. 

    Hubble died of a heart attack in 1953. One last small oddity awaited him. For reasons 
cloaked in mystery, his wife declined to have a funeral and never revealed what she did with 
his body. Half a century later the whereabouts of the century’s greatest astronomer remain 
unknown. For a memorial you must look to the sky and the Hubble Space Telescope, 
launched in 1990 and named in his honor. 



9    THE MIGHTY ATOM 

WHILE EINSTEIN AND Hubble were productively unraveling the large-scale structure of 
the cosmos, others were struggling to understand something closer to hand but in its way just 
as remote: the tiny and ever- mysterious atom. 

    The great Caltech physicist Richard Feynman once observed that if you had to reduce 
scientific history to one important statement it would be “All things are made of atoms.” They 
are everywhere and they constitute every thing. Look around you. It is all atoms. Not just the 
solid things like walls and tables and sofas, but the air in between. And they are there in 
numbers that you really cannot conceive. 

    The basic working arrangement of atoms is the molecule (from the Latin for “little mass”). 
A molecule is simply two or more atoms working together in a more or less stable 
arrangement: add two atoms of hydrogen to one of oxygen and you have a molecule of water. 
Chemists tend to think in terms of molecules rather than elements in much the way that 
writers tend to think in terms of words and not letters, so it is molecules they count, and these 
are numerous to say the least. At sea level, at a temperature of 32 degrees Fahrenheit, one 
cubic centimeter of air (that is, a space about the size of a sugar cube) will contain 45 billion 
billion molecules. And they are in every single cubic centimeter you see around you. Think 
how many cubic centimeters there are in the world outside your window—how many sugar 
cubes it would take to fill that view. Then think how many it would take to build a universe. 
Atoms, in short, are very abundant. 

    They are also fantastically durable. Because they are so long lived, atoms really get around. 
Every atom you possess has almost certainly passed through several stars and been part of 
millions of organisms on its way to becoming you. We are each so atomically numerous and 
so vigorously recycled at death that a significant number of our atoms—up to a billion for 
each of us, it has been suggested—probably once belonged to Shakespeare. A billion more 
each came from Buddha and Genghis Khan and Beethoven, and any other historical figure 
you care to name. (The personages have to be historical, apparently, as it takes the atoms 
some decades to become thoroughly redistributed; however much you may wish it, you are 
not yet one with Elvis Presley.) 

    So we are all reincarnations—though short-lived ones. When we die our atoms will 
disassemble and move off to find new uses elsewhere—as part of a leaf or other human being 
or drop of dew. Atoms, however, go on practically forever. Nobody actually knows how long 
an atom can survive, but according to Martin Rees it is probably about 1035years—a number 
so big that even I am happy to express it in notation. 

    Above all, atoms are tiny—very tiny indeed. Half a million of them lined up shoulder to 
shoulder could hide behind a human hair. On such a scale an individual atom is essentially 
impossible to imagine, but we can of course try. 

    Start with a millimeter, which is a line this long: -. Now imagine that line divided into a 
thousand equal widths. Each of those widths is a micron. This is the scale of microorganisms. 
A typical paramecium, for instance, is about two microns wide, 0.002 millimeters, which is 
really very small. If you wanted to see with your naked eye a paramecium swimming in a 
drop of water, you would have to enlarge the drop until it was some forty feet across. 
However, if you wanted to see the atoms in the same drop, you would have to make the drop 
fifteen miles across. 



    Atoms, in other words, exist on a scale of minuteness of another order altogether. To get 
down to the scale of atoms, you would need to take each one of those micron slices and shave 
it into ten thousand finer widths. That’s the scale of an atom: one ten-millionth of a 
millimeter. It is a degree of slenderness way beyond the capacity of our imaginations, but you 
can get some idea of the proportions if you bear in mind that one atom is to the width of a 
millimeter line as the thickness of a sheet of paper is to the height of the Empire State 
Building. 

    It is of course the abundance and extreme durability of atoms that makes them so useful, 
and the tininess that makes them so hard to detect and understand. The realization that atoms 
are these three things—small, numerous, practically indestructible—and that all things are 
made from them first occurred not to Antoine-Laurent Lavoisier, as you might expect, or even 
to Henry Cavendish or Humphry Davy, but rather to a spare and lightly educated English 
Quaker named John Dalton, whom we first encountered in the chapter on chemistry. 

    Dalton was born in 1766 on the edge of the Lake District near Cockermouth to a family of 
poor but devout Quaker weavers. (Four years later the poet William Wordsworth would also 
join the world at Cockermouth.) He was an exceptionally bright student—so very bright 
indeed that at the improbably youthful age of twelve he was put in charge of the local Quaker 
school. This perhaps says as much about the school as about Dalton’s precocity, but perhaps 
not: we know from his diaries that at about this time he was reading Newton’s Principia in the 
original Latin and other works of a similarly challenging nature. At fifteen, still 
schoolmastering, he took a job in the nearby town of Kendal, and a decade after that he 
moved to Manchester, scarcely stirring from there for the remaining fifty years of his life. In 
Manchester he became something of an intellectual whirlwind, producing books and papers 
on subjects ranging from meteorology to grammar. Color blindness, a condition from which 
he suffered, was for a long time called Daltonism because of his studies. But it was a plump 
book called A New System of Chemical Philosophy, published in 1808, that established his 
reputation. 

    There, in a short chapter of just five pages (out of the book’s more than nine hundred), 
people of learning first encountered atoms in something approaching their modern 
conception. Dalton’s simple insight was that at the root of all matter are exceedingly tiny, 
irreducible particles. “We might as well attempt to introduce a new planet into the solar 
system or annihilate one already in existence, as to create or destroy a particle of hydrogen,” 
he wrote. 

    Neither the idea of atoms nor the term itself was exactly new. Both had been developed by 
the ancient Greeks. Dalton’s contribution was to consider the relative sizes and characters of 
these atoms and how they fit together. He knew, for instance, that hydrogen was the lightest 
element, so he gave it an atomic weight of one. He believed also that water consisted of seven 
parts of oxygen to one of hydrogen, and so he gave oxygen an atomic weight of seven. By 
such means was he able to arrive at the relative weights of the known elements. He wasn’t 
always terribly accurate—oxygen’s atomic weight is actually sixteen, not seven—but the 
principle was sound and formed the basis for all of modern chemistry and much of the rest of 
modern science. 

    The work made Dalton famous—albeit in a low-key, English Quaker sort of way. In 1826, 
the French chemist P .J. Pelletier traveled to Manchester to meet the atomic hero. Pelletier 
expected to find him attached to some grand institution, so he was astounded to discover him 
teaching elementary arithmetic to boys in a small school on a back street. According to the 



scientific historian E. J. Holmyard, a confused Pelletier, upon beholding the great man, 
stammered: 

 

     “Est-ce que j’ai l’honneur de m’addresser à Monsieur Dalton?” for he could 
hardly believe his eyes that this was the chemist of European fame, teaching a boy 
his first four rules. “Yes,” said the matter-of-fact Quaker. “Wilt thou sit down 
whilst I put this lad right about his arithmetic?” 

 

    Although Dalton tried to avoid all honors, he was elected to the Royal Society against his 
wishes, showered with medals, and given a handsome government pension. When he died in 
1844, forty thousand people viewed the coffin, and the funeral cortege stretched for two 
miles. His entry in the Dictionary of National Biography is one of the longest, rivaled in 
length only by those of Darwin and Lyell among nineteenth-century men of science. 

    For a century after Dalton made his proposal, it remained entirely hypothetical, and a few 
eminent scientists—notably the Viennese physicist Ernst Mach, for whom is named the speed 
of sound—doubted the existence of atoms at all. “Atoms cannot be perceived by the senses . . 
. they are things of thought,” he wrote. The existence of atoms was so doubtfully held in the 
German-speaking world in particular that it was said to have played a part in the suicide of the 
great theoretical physicist, and atomic enthusiast, Ludwig Boltzmann in 1906. 

    It was Einstein who provided the first incontrovertible evidence of atoms’ existence with 
his paper on Brownian motion in 1905, but this attracted little attention and in any case 
Einstein was soon to become consumed with his work on general relativity. So the first real 
hero of the atomic age, if not the first personage on the scene, was Ernest Rutherford. 

    Rutherford was born in 1871 in the “back blocks” of New Zealand to parents who had 
emigrated from Scotland to raise a little flax and a lot of children (to paraphrase Steven 
Weinberg). Growing up in a remote part of a remote country, he was about as far from the 
mainstream of science as it was possible to be, but in 1895 he won a scholarship that took him 
to the Cavendish Laboratory at Cambridge University, which was about to become the hottest 
place in the world to do physics. 

  

    Physicists are notoriously scornful of scientists from other fields. When the wife of the 
great Austrian physicist Wolfgang Pauli left him for a chemist, he was staggered with 
disbelief. “Had she taken a bullfighter I would have understood,” he remarked in wonder to a 
friend. “But a chemist . . .” 

    It was a feeling Rutherford would have understood. “All science is either physics or stamp 
collecting,” he once said, in a line that has been used many times since. There is a certain 
engaging irony therefore that when he won the Nobel Prize in 1908, it was in chemistry, not 
physics. 



    Rutherford was a lucky man—lucky to be a genius, but even luckier to live at a time when 
physics and chemistry were so exciting and so compatible (his own sentiments 
notwithstanding). Never again would they quite so comfortably overlap. 

    For all his success, Rutherford was not an especially brilliant man and was actually pretty 
terrible at mathematics. Often during lectures he would get so lost in his own equations that 
he would give up halfway through and tell the students to work it out for themselves. 
According to his longtime colleague James Chadwick, discoverer of the neutron, he wasn’t 
even particularly clever at experimentation. He was simply tenacious and open-minded. For 
brilliance he substituted shrewdness and a kind of daring. His mind, in the words of one 
biographer, was “always operating out towards the frontiers, as far as he could see, and that 
was a great deal further than most other men.” Confronted with an intractable problem, he 
was prepared to work at it harder and longer than most people and to be more receptive to 
unorthodox explanations. His greatest breakthrough came because he was prepared to spend 
immensely tedious hours sitting at a screen counting alpha particle scintillations, as they were 
known—the sort of work that would normally have been farmed out. He was one of the first 
to see—possibly the very first—that the power inherent in the atom could, if harnessed, make 
bombs powerful enough to “make this old world vanish in smoke.” 

    Physically he was big and booming, with a voice that made the timid shrink. Once when 
told that Rutherford was about to make a radio broadcast across the Atlantic, a colleague drily 
asked: “Why use radio?” He also had a huge amount of good-natured confidence. When 
someone remarked to him that he seemed always to be at the crest of a wave, he responded, 
“Well, after all, I made the wave, didn’t I?” C. P. Snow recalled how once in a Cambridge 
tailor’s he overheard Rutherford remark: “Every day I grow in girth. And in mentality.” 

    But both girth and fame were far ahead of him in 1895 when he fetched up at the 
Cavendish.1 It was a singularly eventful period in science. In the year of his arrival in 
Cambridge, Wilhelm Roentgen discovered X rays at the University of Würzburg in Germany, 
and the next year Henri Becquerel discovered radioactivity. And the Cavendish itself was 
about to embark on a long period of greatness. In 1897, J. J. Thomson and colleagues would 
discover the electron there, in 1911 C. T. R. Wilson would produce the first particle detector 
there (as we shall see), and in 1932 James Chadwick would discover the neutron there. 
Further still in the future, James Watson and Francis Crick would discover the structure of 
DNA at the Cavendish in 1953. 

    In the beginning Rutherford worked on radio waves, and with some distinction—he 
managed to transmit a crisp signal more than a mile, a very reasonable achievement for the 
time—but gave it up when he was persuaded by a senior colleague that radio had little future. 
On the whole, however, Rutherford didn’t thrive at the Cavendish. After three years there, 
feeling he was going nowhere, he took a post at McGill University in Montreal, and there he 
began his long and steady rise to greatness. By the time he received his Nobel Prize (for 
“investigations into the disintegration of the elements, and the chemistry of radioactive 
substances,” according to the official citation) he had moved on to Manchester University, 
and it was there, in fact, that he would do his most important work in determining the 
structure and nature of the atom. 

                                                 
1 The name comes from the same Cavendishes who producec Henry. This one was William Cavendish, seventh 
Duke of Devonshire, who was a gifted mathematician and steel baron in Victoriar England. In 1870, he gave the 
university £6,300 to build an experimental lab. 



    By the early twentieth century it was known that atoms were made of parts—Thomson’s 
discovery of the electron had established that—but it wasn’t known how many parts there 
were or how they fit together or what shape they took. Some physicists thought that atoms 
might be cube shaped, because cubes can be packed together so neatly without any wasted 
space. The more general view, however, was that an atom was more like a currant bun or a 
plum pudding: a dense, solid object that carried a positive charge but that was studded with 
negatively charged electrons, like the currants in a currant bun. 

    In 1910, Rutherford (assisted by his student Hans Geiger, who would later invent the 
radiation detector that bears his name) fired ionized helium atoms, or alpha particles, at a 
sheet of gold foil.2 To Rutherford’s astonishment, some of the particles bounced back. It was 
as if, he said, he had fired a fifteen-inch shell at a sheet of paper and it rebounded into his lap. 
This was just not supposed to happen. After considerable reflection he realized there could be 
only one possible explanation: the particles that bounced back were striking something small 
and dense at the heart of the atom, while the other particles sailed through unimpeded. An 
atom, Rutherford realized, was mostly empty space, with a very dense nucleus at the center. 
This was a most gratifying discovery, but it presented one immediate problem. By all the laws 
of conventional physics, atoms shouldn’t therefore exist. 

  

    Let us pause for a moment and consider the structure of the atom as we know it now. Every 
atom is made from three kinds of elementary particles: protons, which have a positive 
electrical charge; electrons, which have a negative electrical charge; and neutrons, which have 
no charge. Protons and neutrons are packed into the nucleus, while electrons spin around 
outside. The number of protons is what gives an atom its chemical identity. An atom with one 
proton is an atom of hydrogen, one with two protons is helium, with three protons is lithium, 
and so on up the scale. Each time you add a proton you get a new element. (Because the 
number of protons in an atom is always balanced by an equal number of electrons, you will 
sometimes see it written that it is the number of electrons that defines an element; it comes to 
the same thing. The way it was explained to me is that protons give an atom its identity, 
electrons its personality.) 

    Neutrons don’t influence an atom’s identity, but they do add to its mass. The number of 
neutrons is generally about the same as the number of protons, but they can vary up and down 
slightly. Add a neutron or two and you get an isotope. The terms you hear in reference to 
dating techniques in archeology refer to isotopes—carbon-14, for instance, which is an atom 
of carbon with six protons and eight neutrons (the fourteen being the sum of the two). 

    Neutrons and protons occupy the atom’s nucleus. The nucleus of an atom is tiny—only one 
millionth of a billionth of the full volume of the atom—but fantastically dense, since it 
contains virtually all the atom’s mass. As Cropper has put it, if an atom were expanded to the 
size of a cathedral, the nucleus would be only about the size of a fly—but a fly many 
thousands of times heavier than the cathedral. It was this spaciousness—this resounding, 
unexpected roominess—that had Rutherford scratching his head in 1910. 

    It is still a fairly astounding notion to consider that atoms are mostly empty space, and that 
the solidity we experience all around us is an illusion. When two objects come together in the 
                                                 
2 Geiger would also later become a loyal Nazi, unhesitatingly betraying Jewish colleagues, including many who 
had helped him. 
 



real world—billiard balls are most often used for illustration—they don’t actually strike each 
other. “Rather,” as Timothy Ferris explains, “the negatively charged fields of the two balls 
repel each other . . . were it not for their electrical charges they could, like galaxies, pass right 
through each other unscathed.” When you sit in a chair, you are not actually sitting there, but 
levitating above it at a height of one angstrom (a hundred millionth of a centimeter), your 
electrons and its electrons implacably opposed to any closer intimacy. 

    The picture that nearly everybody has in mind of an atom is of an electron or two flying 
around a nucleus, like planets orbiting a sun. This image was created in 1904, based on little 
more than clever guesswork, by a Japanese physicist named Hantaro Nagaoka. It is 
completely wrong, but durable just the same. As Isaac Asimov liked to note, it inspired 
generations of science fiction writers to create stories of worlds within worlds, in which atoms 
become tiny inhabited solar systems or our solar system turns out to be merely a mote in some 
much larger scheme. Even now CERN, the European Organization for Nuclear Research, uses 
Nagaoka’s image as a logo on its website. In fact, as physicists were soon to realize, electrons 
are not like orbiting planets at all, but more like the blades of a spinning fan, managing to fill 
every bit of space in their orbits simultaneously (but with the crucial difference that the blades 
of a fan only seem to be everywhere at once; electrons are ). 

  

    Needless to say, very little of this was understood in 1910 or for many years afterward. 
Rutherford’s finding presented some large and immediate problems, not least that no electron 
should be able to orbit a nucleus without crashing. Conventional electrodynamic theory 
demanded that a flying electron should very quickly run out of energy—in only an instant or 
so—and spiral into the nucleus, with disastrous consequences for both. There was also the 
problem of how protons with their positive charges could bundle together inside the nucleus 
without blowing themselves and the rest of the atom apart. Clearly whatever was going on 
down there in the world of the very small was not governed by the laws that applied in the 
macro world where our expectations reside. 

     As physicists began to delve into this subatomic realm, they realized that it wasn’t merely 
different from anything we knew, but different from anything ever imagined. “Because 
atomic behavior is so unlike ordinary experience,” Richard Feynman once observed, “it is 
very difficult to get used to and it appears peculiar and mysterious to everyone, both to the 
novice and to the experienced physicist.” When Feynman made that comment, physicists had 
had half a century to adjust to the strangeness of atomic behavior. So think how it must have 
felt to Rutherford and his colleagues in the early 1910s when it was all brand new. 

    One of the people working with Rutherford was a mild and affable young Dane named 
Niels Bohr. In 1913, while puzzling over the structure of the atom, Bohr had an idea so 
exciting that he postponed his honeymoon to write what became a landmark paper. Because 
physicists couldn’t see anything so small as an atom, they had to try to work out its structure 
from how it behaved when they did things to it, as Rutherford had done by firing alpha 
particles at foil. Sometimes, not surprisingly, the results of these experiments were puzzling. 
One puzzle that had been around for a long time had to do with spectrum readings of the 
wavelengths of hydrogen. These produced patterns showing that hydrogen atoms emitted 
energy at certain wavelengths but not others. It was rather as if someone under surveillance 
kept turning up at particular locations but was never observed traveling between them. No one 
could understand why this should be. 



    It was while puzzling over this problem that Bohr was struck by a solution and dashed off 
his famous paper. Called “On the Constitutions of Atoms and Molecules,” the paper explained 
how electrons could keep from falling into the nucleus by suggesting that they could occupy 
only certain well-defined orbits. According to the new theory, an electron moving between 
orbits would disappear from one and reappear instantaneously in another without visiting the 
space between. This idea—the famous “quantum leap”—is of course utterly strange, but it 
was too good not to be true. It not only kept electrons from spiraling catastrophically into the 
nucleus; it also explained hydrogen’s bewildering wavelengths. The electrons only appeared 
in certain orbits because they only existed in certain orbits. It was a dazzling insight, and it 
won Bohr the 1922 Nobel Prize in physics, the year after Einstein received his. 

    Meanwhile the tireless Rutherford, now back at Cambridge as J. J. Thomson’s successor as 
head of the Cavendish Laboratory, came up with a model that explained why the nuclei didn’t 
blow up. He saw that they must be offset by some type of neutralizing particles, which he 
called neutrons. The idea was simple and appealing, but not easy to prove. Rutherford’s 
associate, James Chadwick, devoted eleven intensive years to hunting for neutrons before 
finally succeeding in 1932. He, too, was awarded with a Nobel Prize in physics, in 1935. As 
Boorse and his colleagues point out in their history of the subject, the delay in discovery was 
probably a very good thing as mastery of the neutron was essential to the development of the 
atomic bomb. (Because neutrons have no charge, they aren’t repelled by the electrical fields at 
the heart of an atom and thus could be fired like tiny torpedoes into an atomic nucleus, setting 
off the destructive process known as fission.) Had the neutron been isolated in the 1920s, they 
note, it is “very likely the atomic bomb would have been developed first in Europe, 
undoubtedly by the Germans.” 

    As it was, the Europeans had their hands full trying to understand the strange behavior of 
the electron. The principal problem they faced was that the electron sometimes behaved like a 
particle and sometimes like a wave. This impossible duality drove physicists nearly mad. For 
the next decade all across Europe they furiously thought and scribbled and offered competing 
hypotheses. In France, Prince Louis-Victor de Broglie, the scion of a ducal family, found that 
certain anomalies in the behavior of electrons disappeared when one regarded them as waves. 
The observation excited the attention of the Austrian Erwin Schrödinger, who made some deft 
refinements and devised a handy system called wave mechanics. At almost the same time the 
German physicist Werner Heisenberg came up with a competing theory called matrix 
mechanics. This was so mathematically complex that hardly anyone really understood it, 
including Heisenberg himself (“I do not even know what a matrix is ,” Heisenberg despaired 
to a friend at one point), but it did seem to solve certain problems that Schrödinger’s waves 
failed to explain. The upshot is that physics had two theories, based on conflicting premises, 
that produced the same results. It was an impossible situation. 

    Finally, in 1926, Heisenberg came up with a celebrated compromise, producing a new 
discipline that came to be known as quantum mechanics. At the heart of it was Heisenberg’s 
Uncertainty Principle, which states that the electron is a particle but a particle that can be 
described in terms of waves. The uncertainty around which the theory is built is that we can 
know the path an electron takes as it moves through a space or we can know where it is at a 
given instant, but we cannot know both.3 Any attempt to measure one will unavoidably 

                                                 
3 There is a little uncertainty about the use of the word uncertainty in regard to Heisenberg's principle. Michael 
Frayn, in an afterword to his play Copenhagen, notes that several words in German-Unsicherheit, Unscharfe, 
Unbestimmtheit-have been used by various translators, but that none quite equates to the English uncertainty. 
Frayn suggests that indeterminacy would be a better word for the principle and indeterminability would be better 
still. 



disturb the other. This isn’t a matter of simply needing more precise instruments; it is an 
immutable property of the universe. 

    What this means in practice is that you can never predict where an electron will be at any 
given moment. You can only list its probability of being there. In a sense, as Dennis Overbye 
has put it, an electron doesn’t exist until it is observed. Or, put slightly differently, until it is 
observed an electron must be regarded as being “at once everywhere and nowhere.” 

    If this seems confusing, you may take some comfort in knowing that it was confusing to 
physicists, too. Overbye notes: “Bohr once commented that a person who wasn’t outraged on 
first hearing about quantum theory didn’t understand what had been said.” Heisenberg, when 
asked how one could envision an atom, replied: “Don’t try.” 

    So the atom turned out to be quite unlike the image that most people had created. The 
electron doesn’t fly around the nucleus like a planet around its sun, but instead takes on the 
more amorphous aspect of a cloud. The “shell” of an atom isn’t some hard shiny casing, as 
illustrations sometimes encourage us to suppose, but simply the outermost of these fuzzy 
electron clouds. The cloud itself is essentially just a zone of statistical probability marking the 
area beyond which the electron only very seldom strays. Thus an atom, if you could see it, 
would look more like a very fuzzy tennis ball than a hard-edged metallic sphere (but not much 
like either or, indeed, like anything you’ve ever seen; we are, after all, dealing here with a 
world very different from the one we see around us). 

    It seemed as if there was no end of strangeness. For the first time, as James Trefil has put it, 
scientists had encountered “an area of the universe that our brains just aren’t wired to 
understand.” Or as Feynman expressed it, “things on a small scale behave nothing like things 
on a large scale.” As physicists delved deeper, they realized they had found a world where not 
only could electrons jump from one orbit to another without traveling across any intervening 
space, but matter could pop into existence from nothing at all—“provided,” in the words of 
Alan Lightman of MIT, “it disappears again with sufficient haste.” 

    Perhaps the most arresting of quantum improbabilities is the idea, arising from Wolfgang 
Pauli’s Exclusion Principle of 1925, that the subatomic particles in certain pairs, even when 
separated by the most considerable distances, can each instantly “know” what the other is 
doing. Particles have a quality known as spin and, according to quantum theory, the moment 
you determine the spin of one particle, its sister particle, no matter how distant away, will 
immediately begin spinning in the opposite direction and at the same rate. 

    It is as if, in the words of the science writer Lawrence Joseph, you had two identical pool 
balls, one in Ohio and the other in Fiji, and the instant you sent one spinning the other would 
immediately spin in a contrary direction at precisely the same speed. Remarkably, the 
phenomenon was proved in 1997 when physicists at the University of Geneva sent photons 
seven miles in opposite directions and demonstrated that interfering with one provoked an 
instantaneous response in the other. 

    Things reached such a pitch that at one conference Bohr remarked of a new theory that the 
question was not whether it was crazy, but whether it was crazy enough. To illustrate the 
nonintuitive nature of the quantum world, Schrödinger offered a famous thought experiment 
in which a hypothetical cat was placed in a box with one atom of a radioactive substance 
attached to a vial of hydrocyanic acid. If the particle degraded within an hour, it would trigger 
a mechanism that would break the vial and poison the cat. If not, the cat would live. But we 



could not know which was the case, so there was no choice, scientifically, but to regard the 
cat as 100 percent alive and 100 percent dead at the same time. This means, as Stephen 
Hawking has observed with a touch of understandable excitement, that one cannot “predict 
future events exactly if one cannot even measure the present state of the universe precisely!” 

    Because of its oddities, many physicists disliked quantum theory, or at least certain aspects 
of it, and none more so than Einstein. This was more than a little ironic since it was he, in his 
annus mirabilis of 1905, who had so persuasively explained how photons of light could 
sometimes behave like particles and sometimes like waves—the notion at the very heart of the 
new physics. “Quantum theory is very worthy of regard,” he observed politely, but he really 
didn’t like it. “God doesn’t play dice,” he said.4  

    Einstein couldn’t bear the notion that God could create a universe in which some things 
were forever unknowable. Moreover, the idea of action at a distance—that one particle could 
instantaneously influence another trillions of miles away—was a stark violation of the special 
theory of relativity. This expressly decreed that nothing could outrace the speed of light and 
yet here were physicists insisting that, somehow, at the subatomic level, information could. 
(No one, incidentally, has ever explained how the particles achieve this feat. Scientists have 
dealt with this problem, according to the physicist Yakir Aharanov, “by not thinking about 
it.”) 

    Above all, there was the problem that quantum physics introduced a level of untidiness that 
hadn’t previously existed. Suddenly you needed two sets of laws to explain the behavior of 
the universe—quantum theory for the world of the very small and relativity for the larger 
universe beyond. The gravity of relativity theory was brilliant at explaining why planets 
orbited suns or why galaxies tended to cluster, but turned out to have no influence at all at the 
particle level. To explain what kept atoms together, other forces were needed, and in the 
1930s two were discovered: the strong nuclear force and weak nuclear force. The strong force 
binds atoms together; it’s what allows protons to bed down together in the nucleus. The weak 
force engages in more miscellaneous tasks, mostly to do with controlling the rates of certain 
sorts of radioactive decay. 

    The weak nuclear force, despite its name, is ten billion billion billion times stronger than 
gravity, and the strong nuclear force is more powerful still—vastly so, in fact—but their 
influence extends to only the tiniest distances. The grip of the strong force reaches out only to 
about 1/100,000 of the diameter of an atom. That’s why the nuclei of atoms are so compacted 
and dense and why elements with big, crowded nuclei tend to be so unstable: the strong force 
just can’t hold on to all the protons. 

    The upshot of all this is that physics ended up with two bodies of laws—one for the world 
of the very small, one for the universe at large—leading quite separate lives. Einstein disliked 
that, too. He devoted the rest of his life to searching for a way to tie up these loose ends by 
finding a grand unified theory, and always failed. From time to time he thought he had it, but 
it always unraveled on him in the end. As time passed he became increasingly marginalized 
and even a little pitied. Almost without exception, wrote Snow, “his colleagues thought, and 
still think, that he wasted the second half of his life.” 

                                                 
4 Or at least that is how it is nearly always rendered. The actual quote was: “It seems hard to sneak a look at 
God’s cards. But that He plays dice and uses ‘telepathic’ methods. . . is something that I cannot believe for a  
single moment.” 
 



    Elsewhere, however, real progress was being made. By the mid-1940s scientists had 
reached a point where they understood the atom at an extremely profound level—as they all 
too effectively demonstrated in August 1945 by exploding a pair of atomic bombs over Japan. 

    By this point physicists could be excused for thinking that they had just about conquered 
the atom. In fact, everything in particle physics was about to get a whole lot more 
complicated. But before we take up that slightly exhausting story, we must bring another 
straw of our history up to date by considering an important and salutary tale of avarice, deceit, 
bad science, several needless deaths, and the final determination of the age of the Earth. 



10    GETTING THE LEAD OUT 

 

 

 

IN THE LATE 1940s, a graduate student at the University of Chicago named Clair Patterson 
(who was, first name notwithstanding, an Iowa farm boy by origin) was using a new method 
of lead isotope measurement to try to get a definitive age for the Earth at last. Unfortunately 
all his samples came up contaminated—usually wildly so. Most contained something like two 
hundred times the levels of lead that would normally be expected to occur. Many years would 
pass before Patterson realized that the reason for this lay with a regrettable Ohio inventor 
named Thomas Midgley, Jr. 

    Midgley was an engineer by training, and the world would no doubt have been a safer place 
if he had stayed so. Instead, he developed an interest in the industrial applications of 
chemistry. In 1921, while working for the General Motors Research Corporation in Dayton, 
Ohio, he investigated a compound called tetraethyl lead (also known, confusingly, as lead 
tetraethyl), and discovered that it significantly reduced the juddering condition known as 
engine knock. 

    Even though lead was widely known to be dangerous, by the early years of the twentieth 
century it could be found in all manner of consumer products. Food came in cans sealed with 
lead solder. Water was often stored in lead-lined tanks. It was sprayed onto fruit as a pesticide 
in the form of lead arsenate. It even came as part of the packaging of toothpaste tubes. Hardly 
a product existed that didn’t bring a little lead into consumers’ lives. However, nothing gave it 
a greater and more lasting intimacy than its addition to gasoline. 

    Lead is a neurotoxin. Get too much of it and you can irreparably damage the brain and 
central nervous system. Among the many symptoms associated with overexposure are 
blindness, insomnia, kidney failure, hearing loss, cancer, palsies, and convulsions. In its most 
acute form it produces abrupt and terrifying hallucinations, disturbing to victims and 
onlookers alike, which generally then give way to coma and death. You really don’t want to 
get too much lead into your system. 

    On the other hand, lead was easy to extract and work, and almost embarrassingly profitable 
to produce industrially—and tetraethyl lead did indubitably stop engines from knocking. So in 
1923 three of America’s largest corporations, General Motors, Du Pont, and Standard Oil of 
New Jersey, formed a joint enterprise called the Ethyl Gasoline Corporation (later shortened 
to simply Ethyl Corporation) with a view to making as much tetraethyl lead as the world was 
willing to buy, and that proved to be a very great deal. They called their additive “ethyl” 
because it sounded friendlier and less toxic than “lead” and introduced it for public 
consumption (in more ways than most people realized) on February 1, 1923. 

    Almost at once production workers began to exhibit the staggered gait and confused 
faculties that mark the recently poisoned. Also almost at once, the Ethyl Corporation 
embarked on a policy of calm but unyielding denial that would serve it well for decades. As 
Sharon Bertsch McGrayne notes in her absorbing history of industrial chemistry, 
Prometheans in the Lab, when employees at one plant developed irreversible delusions, a 



spokesman blandly informed reporters: “These men probably went insane because they 
worked too hard.” Altogether at least fifteen workers died in the early days of production of 
leaded gasoline, and untold numbers of others became ill, often violently so; the exact 
numbers are unknown because the company nearly always managed to hush up news of 
embarrassing leakages, spills, and poisonings. At times, however, suppressing the news 
became impossible, most notably in 1924 when in a matter of days five production workers 
died and thirty-five more were turned into permanent staggering wrecks at a single ill-
ventilated facility. 

    As rumors circulated about the dangers of the new product, ethyl’s ebullient inventor, 
Thomas Midgley, decided to hold a demonstration for reporters to allay their concerns. As he 
chatted away about the company’s commitment to safety, he poured tetraethyl lead over his 
hands, then held a beaker of it to his nose for sixty seconds, claiming all the while that he 
could repeat the procedure daily without harm. In fact, Midgley knew only too well the perils 
of lead poisoning: he had himself been made seriously ill from overexposure a few months 
earlier and now, except when reassuring journalists, never went near the stuff if he could help 
it. 

  

    Buoyed by the success of leaded gasoline, Midgley now turned to another technological 
problem of the age. Refrigerators in the 1920s were often appallingly risky because they used 
dangerous gases that sometimes leaked. One leak from a refrigerator at a hospital in 
Cleveland, Ohio, in 1929 killed more than a hundred people. Midgley set out to create a gas 
that was stable, nonflammable, noncorrosive, and safe to breathe. With an instinct for the 
regrettable that was almost uncanny, he invented chlorofluorocarbons, or CFCs. 

    Seldom has an industrial product been more swiftly or unfortunately embraced. CFCs went 
into production in the early 1930s and found a thousand applications in everything from car 
air conditioners to deodorant sprays before it was noticed, half a century later, that they were 
devouring the ozone in the stratosphere. As you will be aware, this was not a good thing. 

    Ozone is a form of oxygen in which each molecule bears three atoms of oxygen instead of 
two. It is a bit of a chemical oddity in that at ground level it is a pollutant, while way up in the 
stratosphere it is beneficial, since it soaks up dangerous ultraviolet radiation. Beneficial ozone 
is not terribly abundant, however. If it were distributed evenly throughout the stratosphere, it 
would form a layer just one eighth of an inch or so thick. That is why it is so easily disturbed, 
and why such disturbances don’t take long to become critical. 

    Chlorofluorocarbons are also not very abundant—they constitute only about one part per 
billion of the atmosphere as a whole—but they are extravagantly destructive. One pound of 
CFCs can capture and annihilate seventy thousand pounds of atmospheric ozone. CFCs also 
hang around for a long time—about a century on average—wreaking havoc all the while. 
They are also great heat sponges. A single CFC molecule is about ten thousand times more 
efficient at exacerbating greenhouse effects than a molecule of carbon dioxide—and carbon 
dioxide is of course no slouch itself as a greenhouse gas. In short, chlorofluorocarbons may 
ultimately prove to be just about the worst invention of the twentieth century. 

    Midgley never knew this because he died long before anyone realized how destructive 
CFCs were. His death was itself memorably unusual. After becoming crippled with polio, 
Midgley invented a contraption involving a series of motorized pulleys that automatically 



raised or turned him in bed. In 1944, he became entangled in the cords as the machine went 
into action and was strangled. 

  

    If you were interested in finding out the ages of things, the University of Chicago in the 
1940s was the place to be. Willard Libby was in the process of inventing radiocarbon dating, 
allowing scientists to get an accurate reading of the age of bones and other organic remains, 
something they had never been able to do before. Up to this time, the oldest reliable dates 
went back no further than the First Dynasty in Egypt from about 3000B.C. No one could 
confidently say, for instance, when the last ice sheets had retreated or at what time in the past 
the Cro-Magnon people had decorated the caves of Lascaux in France. 

    Libby’s idea was so useful that he would be awarded a Nobel Prize for it in 1960. It was 
based on the realization that all living things have within them an isotope of carbon called 
carbon-14, which begins to decay at a measurable rate the instant they die. Carbon-14 has a 
half-life—that is, the time it takes for half of any sample to disappear1—of about 5,600 years, 
so by working out how much a given sample of carbon had decayed, Libby could get a good 
fix on the age of an object—though only up to a point. After eight half-lives, only 1/256 of the 
original radioactive carbon remains, which is too little to make a reliable measurement, so 
radiocarbon dating works only for objects up to forty thousand or so years old. 

    Curiously, just as the technique was becoming widespread, certain flaws within it became 
apparent. To begin with, it was discovered that one of the basic components of Libby’s 
formula, known as the decay constant, was off by about 3 percent. By this time, however, 
thousands of measurements had been taken throughout the world. Rather than restate every 
one, scientists decided to keep the inaccurate constant. “Thus,” Tim Flannery notes, “every 
raw radiocarbon date you read today is given as too young by around 3 percent.” The 
problems didn’t quite stop there. It was also quickly discovered that carbon-14 samples can be 
easily contaminated with carbon from other sources—a tiny scrap of vegetable matter, for 
instance, that has been collected with the sample and not noticed. For younger samples—
those under twenty thousand years or so—slight contamination does not always matter so 
much, but for older samples it can be a serious problem because so few remaining atoms are 
being counted. In the first instance, to borrow from Flannery, it is like miscounting by a dollar 
when counting to a thousand; in the second it is more like miscounting by a dollar when you 
have only two dollars to count. 

    Libby’s method was also based on the assumption that the amount of carbon-14 in the 
atmosphere, and the rate at which it has been absorbed by living things, has been consistent 
throughout history. In fact it hasn’t been. We now know that the volume of atmospheric 
carbon-14 varies depending on how well or not Earth’s magnetism is deflecting cosmic rays, 
and that that can vary significantly over time. This means that some carbon-14 dates are more 
                                                 
1 If you have ever wondered how the atoms determine which 50 percent will die and which 50 percent will 
survive for the next session, the answer is that the half-life is really just a statistical convenience-a kind of 
actuarial table for elemental things. Imagine you had a sample of material with a half-life of 30 seconds. It isn't 
that every atom in the sample will exist for exactly 30 seconds or 60 seconds or 90 seconds or some other tidily 
ordained period. Each atom will in fact survive for an entirely random length of time that has nothing to do with 
multiples of 30; it might last until two seconds from now or it might oscillate away for years or decades or 
centuries to come. No one can say. But what we can say is that for the sample as a whole the rate of 
disappearance will be such that half the atoms will disappear every 30 seconds. It's an average rate, in other 
words, and you can apply it to any large sampling. Someone once worked out, for instance, that dimes have a 
half-life of about 30 years. 



dubious than others. This is particularly so with dates just around the time that people first 
came to the Americas, which is one of the reasons the matter is so perennially in dispute. 

    Finally, and perhaps a little unexpectedly, readings can be thrown out by seemingly 
unrelated external factors—such as the diets of those whose bones are being tested. One 
recent case involved the long-running debate over whether syphilis originated in the New 
World or the Old. Archeologists in Hull, in the north of England, found that monks in a 
monastery graveyard had suffered from syphilis, but the initial conclusion that the monks had 
done so before Columbus’s voyage was cast into doubt by the realization that they had eaten a 
lot of fish, which could make their bones appear to be older than in fact they were. The monks 
may well have had syphilis, but how it got to them, and when, remain tantalizingly 
unresolved. 

    Because of the accumulated shortcomings of carbon-14, scientists devised other methods of 
dating ancient materials, among them thermoluminesence, which measures electrons trapped 
in clays, and electron spin resonance, which involves bombarding a sample with 
electromagnetic waves and measuring the vibrations of the electrons. But even the best of 
these could not date anything older than about 200,000 years, and they couldn’t date inorganic 
materials like rocks at all, which is of course what you need if you wish to determine the age 
of your planet. 

    The problems of dating rocks were such that at one point almost everyone in the world had 
given up on them. Had it not been for a determined English professor named Arthur Holmes, 
the quest might well have fallen into abeyance altogether. 

    Holmes was heroic as much for the obstacles he overcame as for the results he achieved. 
By the 1920s, when Holmes was in the prime of his career, geology had slipped out of 
fashion—physics was the new excitement of the age—and had become severely underfunded, 
particularly in Britain, its spiritual birthplace. At Durham University, Holmes was for many 
years the entire geology department. Often he had to borrow or patch together equipment in 
order to pursue his radiometric dating of rocks. At one point, his calculations were effectively 
held up for a year while he waited for the university to provide him with a simple adding 
machine. Occasionally, he had to drop out of academic life altogether to earn enough to 
support his family—for a time he ran a curio shop in Newcastle upon Tyne—and sometimes 
he could not even afford the £5 annual membership fee for the Geological Society. 

    The technique Holmes used in his work was theoretically straightforward and arose directly 
from the process, first observed by Ernest Rutherford in 1904, in which some atoms decay 
from one element into another at a rate predictable enough that you can use them as clocks. If 
you know how long it takes for potassium-40 to become argon-40, and you measure the 
amounts of each in a sample, you can work out how old a material is. Holmes’s contribution 
was to measure the decay rate of uranium into lead to calculate the age of rocks, and thus—he 
hoped—of the Earth. 

    But there were many technical difficulties to overcome. Holmes also needed—or at least 
would very much have appreciated—sophisticated gadgetry of a sort that could make very 
fine measurements from tiny samples, and as we have seen it was all he could do to get a 
simple adding machine. So it was quite an achievement when in 1946 he was able to 
announce with some confidence that the Earth was at least three billion years old and possibly 
rather more. Unfortunately, he now met yet another formidable impediment to acceptance: the 
conservativeness of his fellow scientists. Although happy to praise his methodology, many 



maintained that he had found not the age of the Earth but merely the age of the materials from 
which the Earth had been formed. 

    It was just at this time that Harrison Brown of the University of Chicago developed a new 
method for counting lead isotopes in igneous rocks (which is to say those that were created 
through heating, as opposed to the laying down of sediments). Realizing that the work would 
be exceedingly tedious, he assigned it to young Clair Patterson as his dissertation project. 
Famously he promised Patterson that determining the age of the Earth with his new method 
would be “duck soup.” In fact, it would take years. 

    Patterson began work on the project in 1948. Compared with Thomas Midgley’s colorful 
contributions to the march of progress, Patterson’s discovery of the age of the Earth feels 
more than a touch anticlimactic. For seven years, first at the University of Chicago and then at 
the California Institute of Technology (where he moved in 1952), he worked in a sterile lab, 
making very precise measurements of the lead/uranium ratios in carefully selected samples of 
old rock. 

    The problem with measuring the age of the Earth was that you needed rocks that were 
extremely ancient, containing lead- and uranium-bearing crystals that were about as old as the 
planet itself—anything much younger would obviously give you misleadingly youthful 
dates—but really ancient rocks are only rarely found on Earth. In the late 1940s no one 
altogether understood why this should be. Indeed, and rather extraordinarily, we would be 
well into the space age before anyone could plausibly account for where all the Earth’s old 
rocks went. (The answer was plate tectonics, which we shall of course get to.) Patterson, 
meantime, was left to try to make sense of things with very limited materials. Eventually, and 
ingeniously, it occurred to him that he could circumvent the rock shortage by using rocks 
from beyond Earth. He turned to meteorites. 

    The assumption he made—rather a large one, but correct as it turned out—was that many 
meteorites are essentially leftover building materials from the early days of the solar system, 
and thus have managed to preserve a more or less pristine interior chemistry. Measure the age 
of these wandering rocks and you would have the age also (near enough) of the Earth. 

    As always, however, nothing was quite as straightforward as such a breezy description 
makes it sound. Meteorites are not abundant and meteoritic samples not especially easy to get 
hold of. Moreover, Brown’s measurement technique proved finicky in the extreme and 
needed much refinement. Above all, there was the problem that Patterson’s samples were 
continuously and unaccountably contaminated with large doses of atmospheric lead whenever 
they were exposed to air. It was this that eventually led him to create a sterile laboratory—the 
world’s first, according to at least one account. 

    It took Patterson seven years of patient work just to assemble suitable samples for final 
testing. In the spring of 1953 he traveled to the Argonne National Laboratory in Illinois, 
where he was granted time on a late-model mass spectrograph, a machine capable of detecting 
and measuring the minute quantities of uranium and lead locked up in ancient crystals. When 
at last he had his results, Patterson was so excited that he drove straight to his boyhood home 
in Iowa and had his mother check him into a hospital because he thought he was having a 
heart attack. 

    Soon afterward, at a meeting in Wisconsin, Patterson announced a definitive age for the 
Earth of 4,550 million years (plus or minus 70 million years)—“a figure that stands 



unchanged 50 years later,” as McGrayne admiringly notes. After two hundred years of trying, 
the Earth finally had an age. 

  

    His main work done, Patterson now turned his attention to the nagging question of all that 
lead in the atmosphere. He was astounded to find that what little was known about the effects 
of lead on humans was almost invariably wrong or misleading—and not surprisingly, he 
discovered, since for forty years every study of lead’s effects had been funded exclusively by 
manufacturers of lead additives. 

    In one such study, a doctor who had no specialized training in chemical pathology 
undertook a five-year program in which volunteers were asked to breathe in or swallow lead 
in elevated quantities. Then their urine and feces were tested. Unfortunately, as the doctor 
appears not to have known, lead is not excreted as a waste product. Rather, it accumulates in 
the bones and blood—that’s what makes it so dangerous—and neither bone nor blood was 
tested. In consequence, lead was given a clean bill of health. 

    Patterson quickly established that we had a lot of lead in the atmosphere—still do, in fact, 
since lead never goes away—and that about 90 percent of it appeared to come from 
automobile exhaust pipes, but he couldn’t prove it. What he needed was a way to compare 
lead levels in the atmosphere now with the levels that existed before 1923, when tetraethyl 
lead was introduced. It occurred to him that ice cores could provide the answer. 

    It was known that snowfall in places like Greenland accumulates into discrete annual layers 
(because seasonal temperature differences produce slight changes in coloration from winter to 
summer). By counting back through these layers and measuring the amount of lead in each, he 
could work out global lead concentrations at any time for hundreds, or even thousands, of 
years. The notion became the foundation of ice core studies, on which much modern 
climatological work is based. 

    What Patterson found was that before 1923 there was almost no lead in the atmosphere, and 
that since that time its level had climbed steadily and dangerously. He now made it his life’s 
quest to get lead taken out of gasoline. To that end, he became a constant and often vocal 
critic of the lead industry and its interests. 

    It would prove to be a hellish campaign. Ethyl was a powerful global corporation with 
many friends in high places. (Among its directors have been Supreme Court Justice Lewis 
Powell and Gilbert Grosvenor of the National Geographic Society.) Patterson suddenly found 
research funding withdrawn or difficult to acquire. The American Petroleum Institute 
canceled a research contract with him, as did the United States Public Health Service, a 
supposedly neutral government institution. 

    As Patterson increasingly became a liability to his institution, the school trustees were 
repeatedly pressed by lead industry officials to shut him up or let him go. According to Jamie 
Lincoln Kitman, writing in The Nation in 2000, Ethyl executives allegedly offered to endow a 
chair at Caltech “if Patterson was sent packing.” Absurdly, he was excluded from a 1971 
National Research Council panel appointed to investigate the dangers of atmospheric lead 
poisoning even though he was by now unquestionably the leading expert on atmospheric lead. 



    To his great credit, Patterson never wavered or buckled. Eventually his efforts led to the 
introduction of the Clean Air Act of 1970 and finally to the removal from sale of all leaded 
gasoline in the United States in 1986. Almost immediately lead levels in the blood of 
Americans fell by 80 percent. But because lead is forever, those of us alive today have about 
625 times more lead in our blood than people did a century ago. The amount of lead in the 
atmosphere also continues to grow, quite legally, by about a hundred thousand metric tons a 
year, mostly from mining, smelting, and industrial activities. The United States also banned 
lead in indoor paint, “forty-four years after most of Europe,” as McGrayne notes. 
Remarkably, considering its startling toxicity, lead solder was not removed from American 
food containers until 1993. 

    As for the Ethyl Corporation, it’s still going strong, though GM, Standard Oil, and Du Pont 
no longer have stakes in the company. (They sold out to a company called Albemarle Paper in 
1962.) According to McGrayne, as late as February 2001 Ethyl continued to contend “that 
research has failed to show that leaded gasoline poses a threat to human health or the 
environment.” On its website, a history of the company makes no mention of lead—or indeed 
of Thomas Midgley—but simply refers to the original product as containing “a certain 
combination of chemicals.” 

    Ethyl no longer makes leaded gasoline, although, according to its 2001 company accounts, 
tetraethyl lead (or TEL as it calls it) still accounted for $25.1 million in sales in 2000 (out of 
overall sales of $795 million), up from $24.1 million in 1999, but down from $117 million in 
1998. In its report the company stated its determination to “maximize the cash generated by 
TEL as its usage continues to phase down around the world.” Ethyl markets TEL through an 
agreement with Associated Octel of England. 

    As for the other scourge left to us by Thomas Midgley, chlorofluorocarbons, they were 
banned in 1974 in the United States, but they are tenacious little devils and any that you 
loosed into the atmosphere before then (in your deodorants or hair sprays, for instance) will 
almost certainly be around and devouring ozone long after you have shuffled off. Worse, we 
are still introducing huge amounts of CFCs into the atmosphere every year. According to 
Wayne Biddle, 60 million pounds of the stuff, worth $1.5 billion, still finds its way onto the 
market every year. So who is making it? We are—that is to say, many of our large 
corporations are still making it at their plants overseas. It will not be banned in Third World 
countries until 2010. 

    Clair Patterson died in 1995. He didn’t win a Nobel Prize for his work. Geologists never 
do. Nor, more puzzlingly, did he gain any fame or even much attention from half a century of 
consistent and increasingly selfless achievement. A good case could be made that he was the 
most influential geologist of the twentieth century. Yet who has ever heard of Clair Patterson? 
Most geology textbooks don’t mention him. Two recent popular books on the history of the 
dating of Earth actually manage to misspell his name. In early 2001, a reviewer of one of 
these books in the journal Nature made the additional, rather astounding error of thinking 
Patterson was a woman. 

    At all events, thanks to the work of Clair Patterson by 1953 the Earth at last had an age 
everyone could agree on. The only problem now was it was older than the universe that 
contained it. 
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IN 1911, A British scientist named C. T. R. Wilson was studying cloud formations by 
tramping regularly to the summit of Ben Nevis, a famously damp Scottish mountain, when it 
occurred to him that there must be an easier way to study clouds. Back in the Cavendish Lab 
in Cambridge he built an artificial cloud chamber—a simple device in which he could cool 
and moisten the air, creating a reasonable model of a cloud in laboratory conditions. 

    The device worked very well, but had an additional, unexpected benefit. When he 
accelerated an alpha particle through the chamber to seed his make-believe clouds, it left a 
visible trail—like the contrails of a passing airliner. He had just invented the particle detector. 
It provided convincing evidence that subatomic particles did indeed exist. 

    Eventually two other Cavendish scientists invented a more powerful proton-beam device, 
while in California Ernest Lawrence at Berkeley produced his famous and impressive 
cyclotron, or atom smasher, as such devices were long excitingly known. All of these 
contraptions worked—and indeed still work—on more or less the same principle, the idea 
being to accelerate a proton or other charged particle to an extremely high speed along a track 
(sometimes circular, sometimes linear), then bang it into another particle and see what flies 
off. That’s why they were called atom smashers. It wasn’t science at its subtlest, but it was 
generally effective. 

    As physicists built bigger and more ambitious machines, they began to find or postulate 
particles or particle families seemingly without number: muons, pions, hyperons, mesons, K-
mesons, Higgs bosons, intermediate vector bosons, baryons, tachyons. Even physicists began 
to grow a little uncomfortable. “Young man,” Enrico Fermi replied when a student asked him 
the name of a particular particle, “if I could remember the names of these particles, I would 
have been a botanist.” 

    Today accelerators have names that sound like something Flash Gordon would use in 
battle: the Super Proton Synchrotron, the Large Electron-Positron Collider, the Large Hadron 
Collider, the Relativistic Heavy Ion Collider. Using huge amounts of energy (some operate 
only at night so that people in neighboring towns don’t have to witness their lights fading 
when the apparatus is fired up), they can whip particles into such a state of liveliness that a 
single electron can do forty-seven thousand laps around a four-mile tunnel in a second. Fears 
have been raised that in their enthusiasm scientists might inadvertently create a black hole or 
even something called “strange quarks,” which could, theoretically, interact with other 
subatomic particles and propagate uncontrollably. If you are reading this, that hasn’t 
happened. 

    Finding particles takes a certain amount of concentration. They are not just tiny and swift 
but also often tantalizingly evanescent. Particles can come into being and be gone again in as 
little as 0.000000000000000000000001 second (10-24). Even the most sluggish of unstable 
particles hang around for no more than 0.0000001 second (10-7). 



    Some particles are almost ludicrously slippery. Every second the Earth is visited by 10,000 
trillion trillion tiny, all but massless neutrinos (mostly shot out by the nuclear broilings of the 
Sun), and virtually all of them pass right through the planet and everything that is on it, 
including you and me, as if it weren’t there. To trap just a few of them, scientists need tanks 
holding up to 12.5 million gallons of heavy water (that is, water with a relative abundance of 
deuterium in it) in underground chambers (old mines usually) where they can’t be interfered 
with by other types of radiation. 

    Very occasionally, a passing neutrino will bang into one of the atomic nuclei in the water 
and produce a little puff of energy. Scientists count the puffs and by such means take us very 
slightly closer to understanding the fundamental properties of the universe. In 1998, Japanese 
observers reported that neutrinos do have mass, but not a great deal—about one ten-millionth 
that of an electron. 

    What it really takes to find particles these days is money and lots of it. There is a curious 
inverse relationship in modern physics between the tininess of the thing being sought and the 
scale of facilities required to do the searching. CERN, the European Organization for Nuclear 
Research, is like a little city. Straddling the border of France and Switzerland, it employs 
three thousand people and occupies a site that is measured in square miles. CERN boasts a 
string of magnets that weigh more than the Eiffel Tower and an underground tunnel over 
sixteen miles around. 

    Breaking up atoms, as James Trefil has noted, is easy; you do it each time you switch on a 
fluorescent light. Breaking up atomic nuclei, however, requires quite a lot of money and a 
generous supply of electricity. Getting down to the level of quarks—the particles that make up 
particles—requires still more: trillions of volts of electricity and the budget of a small Central 
American nation. CERN’s new Large Hadron Collider, scheduled to begin operations in 2005, 
will achieve fourteen trillion volts of energy and cost something over $1.5 billion to 
construct.1  

    But these numbers are as nothing compared with what could have been achieved by, and 
spent upon, the vast and now unfortunately never-to-be Superconducting Supercollider, which 
began being constructed near Waxahachie, Texas, in the 1980s, before experiencing a 
supercollision of its own with the United States Congress. The intention of the collider was to 
let scientists probe “the ultimate nature of matter,” as it is always put, by re-creating as nearly 
as possible the conditions in the universe during its first ten thousand billionths of a second. 
The plan was to fling particles through a tunnel fifty-two miles long, achieving a truly 
staggering ninety-nine trillion volts of energy. It was a grand scheme, but would also have 
cost $8 billion to build (a figure that eventually rose to $10 billion) and hundreds of millions 
of dollars a year to run. 

    In perhaps the finest example in history of pouring money into a hole in the ground, 
Congress spent $2 billion on the project, then canceled it in 1993 after fourteen miles of 
tunnel had been dug. So Texas now boasts the most expensive hole in the universe. The site 
is, I am told by my friend Jeff Guinn of the Fort Worth Star-Telegram, “essentially a vast, 
cleared field dotted along the circumference by a series of disappointed small towns.” 

                                                 
1 There are practical side effects to all this costly effort. The World Wide Web is a CERN offshoot. It was 
invented by a CERN scientist, Tim Berners-Lee, in 1989. 
  



    Since the supercollider debacle particle physicists have set their sights a little lower, but 
even comparatively modest projects can be quite breathtakingly costly when compared with, 
well, almost anything. A proposed neutrino observatory at the old Homestake Mine in Lead, 
South Dakota, would cost $500 million to build—this in a mine that is already dug—before 
you even look at the annual running costs. There would also be $281 million of “general 
conversion costs.” A particle accelerator at Fermilab in Illinois, meanwhile, cost $260 million 
merely to refit. 

    Particle physics, in short, is a hugely expensive enterprise—but it is a productive one. 
Today the particle count is well over 150, with a further 100 or so suspected, but 
unfortunately, in the words of Richard Feynman, “it is very difficult to understand the 
relationships of all these particles, and what nature wants them for, or what the connections 
are from one to another.” Inevitably each time we manage to unlock a box, we find that there 
is another locked box inside. Some people think there are particles called tachyons, which can 
travel faster than the speed of light. Others long to find gravitons—the seat of gravity. At 
what point we reach the irreducible bottom is not easy to say. Carl Sagan in Cosmos raised the 
possibility that if you traveled downward into an electron, you might find that it contained a 
universe of its own, recalling all those science fiction stories of the fifties. “Within it, 
organized into the local equivalent of galaxies and smaller structures, are an immense number 
of other, much tinier elementary particles, which are themselves universes at the next level 
and so on forever—an infinite downward regression, universes within universes, endlessly. 
And upward as well.” 

    For most of us it is a world that surpasses understanding. To read even an elementary guide 
to particle physics nowadays you must now find your way through lexical thickets such as 
this: “The charged pion and antipion decay respectively into a muon plus antineutrino and an 
antimuon plus neutrino with an average lifetime of 2.603 x 10-8seconds, the neutral pion 
decays into two photons with an average lifetime of about 0.8 x 10-16seconds, and the muon 
and antimuon decay respectively into . . .” And so it runs on—and this from a book for the 
general reader by one of the (normally) most lucid of interpreters, Steven Weinberg. 

  

    In the 1960s, in an attempt to bring just a little simplicity to matters, the Caltech physicist 
Murray Gell-Mann invented a new class of particles, essentially, in the words of Steven 
Weinberg, “to restore some economy to the multitude of hadrons”—a collective term used by 
physicists for protons, neutrons, and other particles governed by the strong nuclear force. 
Gell-Mann’s theory was that all hadrons were made up of still smaller, even more 
fundamental particles. His colleague Richard Feynman wanted to call these new basic 
particles partons, as in Dolly, but was overruled. Instead they became known as quarks. 

    Gell-Mann took the name from a line in Finnegans Wake: “Three quarks for Muster 
Mark!” (Discriminating physicists rhyme the word with storks, not larks, even though the 
latter is almost certainly the pronunciation Joyce had in mind.) The fundamental simplicity of 
quarks was not long lived. As they became better understood it was necessary to introduce 
subdivisions. Although quarks are much too small to have color or taste or any other physical 
characteristics we would recognize, they became clumped into six categories—up, down, 
strange, charm, top, and bottom—which physicists oddly refer to as their “flavors,” and these 
are further divided into the colors red, green, and blue. (One suspects that it was not altogether 
coincidental that these terms were first applied in California during the age of psychedelia.) 



    Eventually out of all this emerged what is called the Standard Model, which is essentially a 
sort of parts kit for the subatomic world. The Standard Model consists of six quarks, six 
leptons, five known bosons and a postulated sixth, the Higgs boson (named for a Scottish 
scientist, Peter Higgs), plus three of the four physical forces: the strong and weak nuclear 
forces and electromagnetism. 

    The arrangement essentially is that among the basic building blocks of matter are quarks; 
these are held together by particles called gluons; and together quarks and gluons form 
protons and neutrons, the stuff of the atom’s nucleus. Leptons are the source of electrons and 
neutrinos. Quarks and leptons together are called fermions. Bosons (named for the Indian 
physicist S. N. Bose) are particles that produce and carry forces, and include photons and 
gluons. The Higgs boson may or may not actually exist; it was invented simply as a way of 
endowing particles with mass. 

    It is all, as you can see, just a little unwieldy, but it is the simplest model that can explain 
all that happens in the world of particles. Most particle physicists feel, as Leon Lederman 
remarked in a 1985 PBS documentary, that the Standard Model lacks elegance and simplicity. 
“It is too complicated. It has too many arbitrary parameters,” Lederman said. “We don’t really 
see the creator twiddling twenty knobs to set twenty parameters to create the universe as we 
know it.” Physics is really nothing more than a search for ultimate simplicity, but so far all we 
have is a kind of elegant messiness—or as Lederman put it: “There is a deep feeling that the 
picture is not beautiful.” 

    The Standard Model is not only ungainly but incomplete. For one thing, it has nothing at all 
to say about gravity. Search through the Standard Model as you will, and you won’t find 
anything to explain why when you place a hat on a table it doesn’t float up to the ceiling. Nor, 
as we’ve just noted, can it explain mass. In order to give particles any mass at all we have to 
introduce the notional Higgs boson; whether it actually exists is a matter for twenty-first-
century physics. As Feynman cheerfully observed: “So we are stuck with a theory, and we do 
not know whether it is right or wrong, but we do know that it is a little wrong, or at least 
incomplete.” 

    In an attempt to draw everything together, physicists have come up with something called 
superstring theory. This postulates that all those little things like quarks and leptons that we 
had previously thought of as particles are actually “strings”—vibrating strands of energy that 
oscillate in eleven dimensions, consisting of the three we know already plus time and seven 
other dimensions that are, well, unknowable to us. The strings are very tiny—tiny enough to 
pass for point particles. 

    By introducing extra dimensions, superstring theory enables physicists to pull together 
quantum laws and gravitational ones into one comparatively tidy package, but it also means 
that anything scientists say about the theory begins to sound worryingly like the sort of 
thoughts that would make you edge away if conveyed to you by a stranger on a park bench. 
Here, for example, is the physicist Michio Kaku explaining the structure of the universe from 
a superstring perspective: “The heterotic string consists of a closed string that has two types of 
vibrations, clockwise and counterclockwise, which are treated differently. The clockwise 
vibrations live in a ten-dimensional space. The counterclockwise live in a twenty-six-
dimensional space, of which sixteen dimensions have been compactified. (We recall that in 
Kaluza’s original five-dimensional, the fifth dimension was compactified by being wrapped 
up into a circle.)” And so it goes, for some 350 pages. 



    String theory has further spawned something called “M theory,” which incorporates 
surfaces known as membranes—or simply “branes” to the hipper souls of the world of 
physics. I’m afraid this is the stop on the knowledge highway where most of us must get off. 
Here is a sentence from the New York Times, explaining this as simply as possible to a general 
audience: “The ekpyrotic process begins far in the indefinite past with a pair of flat empty 
branes sitting parallel to each other in a warped five-dimensional space. . . . The two branes, 
which form the walls of the fifth dimension, could have popped out of nothingness as a 
quantum fluctuation in the even more distant past and then drifted apart.” No arguing with 
that. No understanding it either. Ekpyrotic, incidentally, comes from the Greek word for 
“conflagration.” 

    Matters in physics have now reached such a pitch that, as Paul Davies noted in Nature, it is 
“almost impossible for the non-scientist to discriminate between the legitimately weird and 
the outright crackpot.” The question came interestingly to a head in the fall of 2002 when two 
French physicists, twin brothers Igor and Grickha Bogdanov, produced a theory of ambitious 
density involving such concepts as “imaginary time” and the “Kubo-Schwinger-Martin 
condition,” and purporting to describe the nothingness that was the universe before the Big 
Bang—a period that was always assumed to be unknowable (since it predated the birth of 
physics and its properties). 

    Almost at once the Bogdanov paper excited debate among physicists as to whether it was 
twaddle, a work of genius, or a hoax. “Scientifically, it’s clearly more or less complete 
nonsense,” Columbia University physicist Peter Woit told the New York Times, “but these 
days that doesn’t much distinguish it from a lot of the rest of the literature.” 

    Karl Popper, whom Steven Weinberg has called “the dean of modern philosophers of 
science,” once suggested that there may not be an ultimate theory for physics—that, rather, 
every explanation may require a further explanation, producing “an infinite chain of more and 
more fundamental principles.” A rival possibility is that such knowledge may simply be 
beyond us. “So far, fortunately,” writes Weinberg in Dreams of a Final Theory, “we do not 
seem to be coming to the end of our intellectual resources.” 

    Almost certainly this is an area that will see further developments of thought, and almost 
certainly these thoughts will again be beyond most of us. 

  

    While physicists in the middle decades of the twentieth-century were looking perplexedly 
into the world of the very small, astronomers were finding no less arresting an incompleteness 
of understanding in the universe at large. 

    When we last met Edwin Hubble, he had determined that nearly all the galaxies in our field 
of view are flying away from us, and that the speed and distance of this retreat are neatly 
proportional: the farther away the galaxy, the faster it is moving. Hubble realized that this 
could be expressed with a simple equation, Ho = v/d (where Ho is the constant, v is the 
recessional velocity of a flying galaxy, andd its distance away from us). Ho has been known 
ever since as the Hubble constant and the whole as Hubble’s Law. Using his formula, Hubble 
calculated that the universe was about two billion years old, which was a little awkward 
because even by the late 1920s it was fairly obvious that many things within the universe—
not least Earth itself—were probably older than that. Refining this figure has been an ongoing 
preoccupation of cosmology. 



    Almost the only thing constant about the Hubble constant has been the amount of 
disagreement over what value to give it. In 1956, astronomers discovered that Cepheid 
variables were more variable than they had thought; they came in two varieties, not one. This 
allowed them to rework their calculations and come up with a new age for the universe of 
from 7 to 20 billion years—not terribly precise, but at least old enough, at last, to embrace the 
formation of the Earth. 

    In the years that followed there erupted a long-running dispute between Allan Sandage, heir 
to Hubble at Mount Wilson, and Gérard de Vaucouleurs, a French-born astronomer based at 
the University of Texas. Sandage, after years of careful calculations, arrived at a value for the 
Hubble constant of 50, giving the universe an age of 20 billion years. De Vaucouleurs was 
equally certain that the Hubble constant was 100.2 This would mean that the universe was 
only half the size and age that Sandage believed—ten billion years. Matters took a further 
lurch into uncertainty when in 1994 a team from the Carnegie Observatories in California, 
using measures from the Hubble space telescope, suggested that the universe could be as little 
as eight billion years old—an age even they conceded was younger than some of the stars 
within the universe. In February 2003, a team from NASA and the Goddard Space Flight 
Center in Maryland, using a new, far-reaching type of satellite called the Wilkinson 
Microwave Anistropy Probe, announced with some confidence that the age of the universe is 
13.7 billion years, give or take a hundred million years or so. There matters rest, at least for 
the moment. 

    The difficulty in making final determinations is that there are often acres of room for 
interpretation. Imagine standing in a field at night and trying to decide how far away two 
distant electric lights are. Using fairly straightforward tools of astronomy you can easily 
enough determine that the bulbs are of equal brightness and that one is, say, 50 percent more 
distant than the other. But what you can’t be certain of is whether the nearer light is, let us 
say, a 58-watt bulb that is 122 feet away or a 61-watt light that is 119 feet, 8 inches away. On 
top of that you must make allowances for distortions caused by variations in the Earth’s 
atmosphere, by intergalactic dust, contaminating light from foreground stars, and many other 
factors. The upshot is that your computations are necessarily based on a series of nested 
assumptions, any of which could be a source of contention. There is also the problem that 
access to telescopes is always at a premium and historically measuring red shifts has been 
notably costly in telescope time. It could take all night to get a single exposure. In 
consequence, astronomers have sometimes been compelled (or willing) to base conclusions 
on notably scanty evidence. In cosmology, as the journalist Geoffrey Carr has suggested, we 
have “a mountain of theory built on a molehill of evidence.” Or as Martin Rees has put it: 
“Our present satisfaction [with our state of understanding] may reflect the paucity of the data 
rather than the excellence of the theory.” 

    This uncertainty applies, incidentally, to relatively nearby things as much as to the distant 
edges of the universe. As Donald Goldsmith notes, when astronomers say that the galaxy M87 
is 60 million light-years away, what they really mean (“but do not often stress to the general 
public”) is that it is somewhere between 40 million and 90 million light-years away—not 
                                                 
2 You are of course entitled to wonder what is meant exactly by "a constant of 50" or "a constant of 100." The 
answer lies in astronomical units of measure. Except conversationally, astronomers don't use light-years. They 
use a distance called the parsec (a contraction of parallax and second), based on a universal measure called the 
stellar parallax and equivalent to 3.26 light-years. Really big measures, like the size of a universe, are measured 
in megaparsecs: a million parsecs. The constant is expressed in terms of kilometers per second per megaparsec. 
Thus when astronomers refer to a Hubble constant of 50, what they really mean is "50 kilometers per second per 
megaparsec." For most of us that is of course an utterly meaningless measure, but then with astronomical 
measures most distances are so huge as to be utterly meaningless. 



quite the same thing. For the universe at large, matters are naturally magnified. Bearing all 
that in mind, the best bets these days for the age of the universe seem to be fixed on a range of 
about 12 billion to 13.5 billion years, but we remain a long way from unanimity. 

    One interesting recently suggested theory is that the universe is not nearly as big as we 
thought, that when we peer into the distance some of the galaxies we see may simply be 
reflections, ghost images created by rebounded light. 

    The fact is, there is a great deal, even at quite a fundamental level, that we don’t know—not 
least what the universe is made of. When scientists calculate the amount of matter needed to 
hold things together, they always come up desperately short. It appears that at least 90 percent 
of the universe, and perhaps as much as 99 percent, is composed of Fritz Zwicky’s “dark 
matter”—stuff that is by its nature invisible to us. It is slightly galling to think that we live in 
a universe that, for the most part, we can’t even see, but there you are. At least the names for 
the two main possible culprits are entertaining: they are said to be either WIMPs (for Weakly 
Interacting Massive Particles, which is to say specks of invisible matter left over from the Big 
Bang) or MACHOs (for MAssive Compact Halo Objects—really just another name for black 
holes, brown dwarfs, and other very dim stars). 

    Particle physicists have tended to favor the particle explanation of WIMPs, astrophysicists 
the stellar explanation of MACHOs. For a time MACHOs had the upper hand, but not nearly 
enough of them were found, so sentiment swung back toward WIMPs but with the problem 
that no WIMP has ever been found. Because they are weakly interacting, they are (assuming 
they even exist) very hard to detect. Cosmic rays would cause too much interference. So 
scientists must go deep underground. One kilometer underground cosmic bombardments 
would be one millionth what they would be on the surface. But even when all these are added 
in, “two-thirds of the universe is still missing from the balance sheet,” as one commentator 
has put it. For the moment we might very well call them DUNNOS (for Dark Unknown 
Nonreflective Nondetectable Objects Somewhere). 

    Recent evidence suggests that not only are the galaxies of the universe racing away from 
us, but that they are doing so at a rate that is accelerating. This is counter to all expectations. It 
appears that the universe may not only be filled with dark matter, but with dark energy. 
Scientists sometimes also call it vacuum energy or, more exotically, quintessence. Whatever it 
is, it seems to be driving an expansion that no one can altogether account for. The theory is 
that empty space isn’t so empty at all—that there are particles of matter and antimatter 
popping into existence and popping out again—and that these are pushing the universe 
outward at an accelerating rate. Improbably enough, the one thing that resolves all this is 
Einstein’s cosmological constant—the little piece of math he dropped into the general theory 
of relativity to stop the universe’s presumed expansion, and called “the biggest blunder of my 
life.” It now appears that he may have gotten things right after all. 

    The upshot of all this is that we live in a universe whose age we can’t quite compute, 
surrounded by stars whose distances we don’t altogether know, filled with matter we can’t 
identify, operating in conformance with physical laws whose properties we don’t truly 
understand. 

    And on that rather unsettling note, let’s return to Planet Earth and consider something that 
we do understand—though by now you perhaps won’t be surprised to hear that we don’t 
understand it completely and what we do understand we haven’t understood for long. 



12    THE EARTH MOVES 

 

 

 

 

IN ONE OF his last professional acts before his death in 1955, Albert Einstein wrote a short 
but glowing foreword to a book by a geologist named Charles Hapgood entitled Earth’s 
Shifting Crust: A Key to Some Basic Problems of Earth Science. Hapgood’s book was a 
steady demolition of the idea that continents were in motion. In a tone that all but invited the 
reader to join him in a tolerant chuckle, Hapgood observed that a few gullible souls had 
noticed “an apparent correspondence in shape between certain continents.” It would appear, 
he went on, “that South America might be fitted together with Africa, and so on. . . . It is even 
claimed that rock formations on opposite sides of the Atlantic match.” 

    Mr. Hapgood briskly dismissed any such notions, noting that the geologists K. E. Caster 
and J. C. Mendes had done extensive fieldwork on both sides of the Atlantic and had 
established beyond question that no such similarities existed. Goodness knows what outcrops 
Messrs. Caster and Mendes had looked at, beacuse in fact many of the rock formations on 
both sides of the Atlanticare the same—not just very similar but the same. 

    This was not an idea that flew with Mr. Hapgood, or many other geologists of his day. The 
theory Hapgood alluded to was one first propounded in 1908 by an amateur American 
geologist named Frank Bursley Taylor. Taylor came from a wealthy family and had both the 
means and freedom from academic constraints to pursue unconventional lines of inquiry. He 
was one of those struck by the similarity in shape between the facing coastlines of Africa and 
South America, and from this observation he developed the idea that the continents had once 
slid around. He suggested—presciently as it turned out—that the crunching together of 
continents could have thrust up the world’s mountain chains. He failed, however, to produce 
much in the way of evidence, and the theory was considered too crackpot to merit serious 
attention. 

    In Germany, however, Taylor’s idea was picked up, and effectively appropriated, by a 
theorist named Alfred Wegener, a meteorologist at the University of Marburg. Wegener 
investigated the many plant and fossil anomalies that did not fit comfortably into the standard 
model of Earth history and realized that very little of it made sense if conventionally 
interpreted. Animal fossils repeatedly turned up on opposite sides of oceans that were clearly 
too wide to swim. How, he wondered, did marsupials travel from South America to Australia? 
How did identical snails turn up in Scandinavia and New England? And how, come to that, 
did one account for coal seams and other semi-tropical remnants in frigid spots like 
Spitsbergen, four hundred miles north of Norway, if they had not somehow migrated there 
from warmer climes? 

    Wegener developed the theory that the world’s continents had once come together in a 
single landmass he called Pangaea, where flora and fauna had been able to mingle, before the 
continents had split apart and floated off to their present positions. All this he put together in a 
book called Die Entstehung der Kontinente und Ozeane, or The Origin of Continents and 



Oceans, which was published in German in 1912 and—despite the outbreak of the First 
World War in the meantime—in English three years later. 

    Because of the war, Wegener’s theory didn’t attract much notice at first, but by 1920, when 
he produced a revised and expanded edition, it quickly became a subject of discussion. 
Everyone agreed that continents moved—but up and down, not sideways. The process of 
vertical movement, known as isostasy, was a foundation of geological beliefs for generations, 
though no one had any good theories as to how or why it happened. One idea, which remained 
in textbooks well into my own school days, was the baked apple theory propounded by the 
Austrian Eduard Suess just before the turn of the century. This suggested that as the molten 
Earth had cooled, it had become wrinkled in the manner of a baked apple, creating ocean 
basins and mountain ranges. Never mind that James Hutton had shown long before that any 
such static arrangement would eventually result in a featureless spheroid as erosion leveled 
the bumps and filled in the divots. There was also the problem, demonstrated by Rutherford 
and Soddy early in the century, that Earthly elements hold huge reserves of heat—much too 
much to allow for the sort of cooling and shrinking Suess suggested. And anyway, if Suess’s 
theory was correct then mountains should be evenly distributed across the face of the Earth, 
which patently they were not, and of more or less the same ages; yet by the early 1900s it was 
already evident that some ranges, like the Urals and Appalachians, were hundreds of millions 
of years older than others, like the Alps and Rockies. Clearly the time was ripe for a new 
theory. Unfortunately, Alfred Wegener was not the man that geologists wished to provide it. 

    For a start, his radical notions questioned the foundations of their discipline, seldom an 
effective way to generate warmth in an audience. Such a challenge would have been painful 
enough coming from a geologist, but Wegener had no background in geology. He was a 
meteorologist, for goodness sake. A weatherman—a German weatherman. These were not 
remediable deficiencies. 

    And so geologists took every pain they could think of to dismiss his evidence and belittle 
his suggestions. To get around the problems of fossil distributions, they posited ancient “land 
bridges” wherever they were needed. When an ancient horse named Hipparion was found to 
have lived in France and Florida at the same time, a land bridge was drawn across the 
Atlantic. When it was realized that ancient tapirs had existed simultaneously in South 
America and Southeast Asia a land bridge was drawn there, too. Soon maps of prehistoric 
seas were almost solid with hypothesized land bridges—from North America to Europe, from 
Brazil to Africa, from Southeast Asia to Australia, from Australia to Antarctica. These 
connective tendrils had not only conveniently appeared whenever it was necessary to move a 
living organism from one landmass to another, but then obligingly vanished without leaving a 
trace of their former existence. None of this, of course, was supported by so much as a grain 
of actual evidence—nothing so wrong could be—yet it was geological orthodoxy for the next 
half century. 

    Even land bridges couldn’t explain some things. One species of trilobite that was well 
known in Europe was also found to have lived on Newfoundland—but only on one side. No 
one could persuasively explain how it had managed to cross two thousand miles of hostile 
ocean but then failed to find its way around the corner of a 200-mile-wide island. Even more 
awkwardly anomalous was another species of trilobite found in Europe and the Pacific 
Northwest but nowhere in between, which would have required not so much a land bridge as a 
flyover. Yet as late as 1964 when the Encyclopaedia Britannica discussed the rival theories, it 
was Wegener’s that was held to be full of “numerous grave theoretical difficulties.” 



    To be sure, Wegener made mistakes. He asserted that Greenland is drifting west by about a 
mile a year, which is clearly nonsense. (It’s more like half an inch.) Above all, he could offer 
no convincing explanation for how the landmasses moved about. To believe in his theory you 
had to accept that massive continents somehow pushed through solid crust, like a plow 
through soil, without leaving any furrow in their wake. Nothing then known could plausibly 
explain what motored these massive movements. 

    It was Arthur Holmes, the English geologist who did so much to determine the age of the 
Earth, who suggested a possible way. Holmes was the first scientist to understand that 
radioactive warming could produce convection currents within the Earth. In theory these 
could be powerful enough to slide continents around on the surface. In his popular and 
influential textbook Principles of Physical Geology , first published in 1944, Holmes laid out 
a continental drift theory that was in its fundamentals the theory that prevails today. It was 
still a radical proposition for the time and widely criticized, particularly in the United States, 
where resistance to drift lasted longer than elsewhere. One reviewer there fretted, without any 
evident sense of irony, that Holmes presented his arguments so clearly and compellingly that 
students might actually come to believe them. 

    Elsewhere, however, the new theory drew steady if cautious support. In 1950, a vote at the 
annual meeting of the British Association for the Advancement of Science showed that about 
half of those present now embraced the idea of continental drift. (Hapgood soon after cited 
this figure as proof of how tragically misled British geologists had become.) Curiously, 
Holmes himself sometimes wavered in his conviction. In 1953 he confessed: “I have never 
succeeded in freeing myself from a nagging prejudice against continental drift; in my 
geological bones, so to speak, I feel the hypothesis is a fantastic one.” 

    Continental drift was not entirely without support in the United States. Reginald Daly of 
Harvard spoke for it, but he, you may recall, was the man who suggested that the Moon had 
been formed by a cosmic impact, and his ideas tended to be considered interesting, even 
worthy, but a touch too exuberant for serious consideration. And so most American academics 
stuck to the belief that the continents had occupied their present positions forever and that 
their surface features could be attributed to something other than lateral motions. 

    Interestingly, oil company geologists had known for years that if you wanted to find oil you 
had to allow for precisely the sort of surface movements that were implied by plate tectonics. 
But oil geologists didn’t write academic papers; they just found oil. 

  

    There was one other major problem with Earth theories that no one had resolved, or even 
come close to resolving. That was the question of where all the sediments went. Every year 
Earth’s rivers carried massive volumes of eroded material—500 million tons of calcium, for 
instance—to the seas. If you multiplied the rate of deposition by the number of years it had 
been going on, it produced a disturbing figure: there should be about twelve miles of 
sediments on the ocean bottoms—or, put another way, the ocean bottoms should by now be 
well above the ocean tops. Scientists dealt with this paradox in the handiest possible way. 
They ignored it. But eventually there came a point when they could ignore it no longer. 

    In the Second World War, a Princeton University mineralogist named Harry Hess was put 
in charge of an attack transport ship, the USS Cape Johnson. Aboard this vessel was a fancy 
new depth sounder called a fathometer, which was designed to facilitate inshore maneuvers 



during beach landings, but Hess realized that it could equally well be used for scientific 
purposes and never switched it off, even when far out at sea, even in the heat of battle. What 
he found was entirely unexpected. If the ocean floors were ancient, as everyone assumed, they 
should be thickly blanketed with sediments, like the mud on the bottom of a river or lake. But 
Hess’s readings showed that the ocean floor offered anything but the gooey smoothness of 
ancient silts. It was scored everywhere with canyons, trenches, and crevasses and dotted with 
volcanic seamounts that he called guyots after an earlier Princeton geologist named Arnold 
Guyot. All this was a puzzle, but Hess had a war to take part in, and put such thoughts to the 
back of his mind. 

    After the war, Hess returned to Princeton and the preoccupations of teaching, but the 
mysteries of the seafloor continued to occupy a space in his thoughts. Meanwhile, throughout 
the 1950s oceanographers were undertaking more and more sophisticated surveys of the 
ocean floors. In so doing, they found an even bigger surprise: the mightiest and most 
extensive mountain range on Earth was—mostly—underwater. It traced a continuous path 
along the world’s seabeds, rather like the stitching on a baseball. If you began at Iceland, you 
could follow it down the center of the Atlantic Ocean, around the bottom of Africa, and across 
the Indian and Southern Oceans, below Australia; there it angled across the Pacific as if 
making for Baja California before shooting up the west coast of the United States to Alaska. 
Occasionally its higher peaks poked above the water as an island or archipelago—the Azores 
and Canaries in the Atlantic, Hawaii in the Pacific, for instance—but mostly it was buried 
under thousands of fathoms of salty sea, unknown and unsuspected. When all its branches 
were added together, the network extended to 46,600 miles. 

    A very little of this had been known for some time. People laying ocean-floor cables in the 
nineteenth century had realized that there was some kind of mountainous intrusion in the mid-
Atlantic from the way the cables ran, but the continuous nature and overall scale of the chain 
was a stunning surprise. Moreover, it contained physical anomalies that couldn’t be explained. 
Down the middle of the mid-Atlantic ridge was a canyon—a rift—up to a dozen miles wide 
for its entire 12,000-mile length. This seemed to suggest that the Earth was splitting apart at 
the seams, like a nut bursting out of its shell. It was an absurd and unnerving notion, but the 
evidence couldn’t be denied. 

    Then in 1960 core samples showed that the ocean floor was quite young at the mid-Atlantic 
ridge but grew progressively older as you moved away from it to the east or west. Harry Hess 
considered the matter and realized that this could mean only one thing: new ocean crust was 
being formed on either side of the central rift, then being pushed away from it as new crust 
came along behind. The Atlantic floor was effectively two large conveyor belts, one carrying 
crust toward North America, the other carrying crust toward Europe. The process became 
known as seafloor spreading. 

    When the crust reached the end of its journey at the boundary with continents, it plunged 
back into the Earth in a process known as subduction. That explained where all the sediment 
went. It was being returned to the bowels of the Earth. It also explained why ocean floors 
everywhere were so comparatively youthful. None had ever been found to be older than about 
175 million years, which was a puzzle because continental rocks were often billions of years 
old. Now Hess could see why. Ocean rocks lasted only as long as it took them to travel to 
shore. It was a beautiful theory that explained a great deal. Hess elaborated his ideas in an 
important paper, which was almost universally ignored. Sometimes the world just isn’t ready 
for a good idea. 



    Meanwhile, two researchers, working independently, were making some startling findings 
by drawing on a curious fact of Earth history that had been discovered several decades earlier. 
In 1906, a French physicist named Bernard Brunhes had found that the planet’s magnetic field 
reverses itself from time to time, and that the record of these reversals is permanently fixed in 
certain rocks at the time of their birth. Specifically, tiny grains of iron ore within the rocks 
point to wherever the magnetic poles happen to be at the time of their formation, then stay 
pointing in that direction as the rocks cool and harden. In effect they “remember” where the 
magnetic poles were at the time of their creation. For years this was little more than a 
curiosity, but in the 1950s Patrick Blackett of the University of London and S. K. Runcorn of 
the University of Newcastle studied the ancient magnetic patterns frozen in British rocks and 
were startled, to say the very least, to find them indicating that at some time in the distant past 
Britain had spun on its axis and traveled some distance to the north, as if it had somehow 
come loose from its moorings. Moreover, they also discovered that if you placed a map of 
Europe’s magnetic patterns alongside an American one from the same period, they fit together 
as neatly as two halves of a torn letter. It was uncanny. 

    Their findings were ignored too. 

    It finally fell to two men from Cambridge University, a geophysicist named Drummond 
Matthews and a graduate student of his named Fred Vine, to draw all the strands together. In 
1963, using magnetic studies of the Atlantic Ocean floor, they demonstrated conclusively that 
the seafloors were spreading in precisely the manner Hess had suggested and that the 
continents were in motion too. An unlucky Canadian geologist named Lawrence Morley came 
up with the same conclusion at the same time, but couldn’t find anyone to publish his paper. 
In what has become a famous snub, the editor of the Journal of Geophysical Research told 
him: “Such speculations make interesting talk at cocktail parties, but it is not the sort of thing 
that ought to be published under serious scientific aegis.” One geologist later described it as 
“probably the most significant paper in the earth sciences ever to be denied publication.” 

    At all events, mobile crust was an idea whose time had finally come. A symposium of 
many of the most important figures in the field was convened in London under the auspices of 
the Royal Society in 1964, and suddenly, it seemed, everyone was a convert. The Earth, the 
meeting agreed, was a mosaic of interconnected segments whose various stately jostlings 
accounted for much of the planet’s surface behavior. 

    The name “continental drift” was fairly swiftly discarded when it was realized that the 
whole crust was in motion and not just the continents, but it took a while to settle on a name 
for the individual segments. At first people called them “crustal blocks” or sometimes “paving 
stones.” Not until late 1968, with the publication of an article by three American 
seismologists in the Journal of Geophysical Research , did the segments receive the name by 
which they have since been known: plates. The same article called the new science plate 
tectonics. 

    Old ideas die hard, and not everyone rushed to embrace the exciting new theory. Well into 
the 1970s, one of the most popular and influential geological textbooks, The Earth by the 
venerable Harold Jeffreys, strenuously insisted that plate tectonics was a physical 
impossibility, just as it had in the first edition way back in 1924. It was equally dismissive of 
convection and seafloor spreading. And in Basin and Range, published in 1980, John McPhee 
noted that even then one American geologist in eight still didn’t believe in plate tectonics. 



    Today we know that Earth’s surface is made up of eight to twelve big plates (depending on 
how you define big) and twenty or so smaller ones, and they all move in different directions 
and at different speeds. Some plates are large and comparatively inactive, others small but 
energetic. They bear only an incidental relationship to the landmasses that sit upon them. The 
North American plate, for instance, is much larger than the continent with which it is 
associated. It roughly traces the outline of the continent’s western coast (which is why that 
area is so seismically active, because of the bump and crush of the plate boundary), but 
ignores the eastern seaboard altogether and instead extends halfway across the Atlantic to the 
mid-ocean ridge. Iceland is split down the middle, which makes it tectonically half American 
and half European. New Zealand, meanwhile, is part of the immense Indian Ocean plate even 
though it is nowhere near the Indian Ocean. And so it goes for most plates. 

    The connections between modern landmasses and those of the past were found to be 
infinitely more complex than anyone had imagined. Kazakhstan, it turns out, was once 
attached to Norway and New England. One corner of Staten Island, but only a corner, is 
European. So is part of Newfoundland. Pick up a pebble from a Massachusetts beach, and its 
nearest kin will now be in Africa. The Scottish Highlands and much of Scandinavia are 
substantially American. Some of the Shackleton Range of Antarctica, it is thought, may once 
have belonged to the Appalachians of the eastern U.S. Rocks, in short, get around. 

    The constant turmoil keeps the plates from fusing into a single immobile plate. Assuming 
things continue much as at present, the Atlantic Ocean will expand until eventually it is much 
bigger than the Pacific. Much of California will float off and become a kind of Madagascar of 
the Pacific. Africa will push northward into Europe, squeezing the Mediterranean out of 
existence and thrusting up a chain of mountains of Himalayan majesty running from Paris to 
Calcutta. Australia will colonize the islands to its north and connect by some isthmian 
umbilicus to Asia. These are future outcomes, but not future events. The events are happening 
now. As we sit here, continents are adrift, like leaves on a pond. Thanks to Global Positioning 
Systems we can see that Europe and North America are parting at about the speed a fingernail 
grows—roughly two yards in a human lifetime. If you were prepared to wait long enough, 
you could ride from Los Angeles all the way up to San Francisco. It is only the brevity of 
lifetimes that keeps us from appreciating the changes. Look at a globe and what you are 
seeing really is a snapshot of the continents as they have been for just one-tenth of 1 percent 
of the Earth’s history. 

    Earth is alone among the rocky planets in having tectonics, and why this should be is a bit 
of a mystery. It is not simply a matter of size or density—Venus is nearly a twin of Earth in 
these respects and yet has no tectonic activity. It is thought—though it is really nothing more 
than a thought—that tectonics is an important part of the planet’s organic well-being. As the 
physicist and writer James Trefil has put it, “It would be hard to believe that the continuous 
movement of tectonic plates has no effect on the development of life on earth.” He suggests 
that the challenges induced by tectonics—changes in climate, for instance—were an 
important spur to the development of intelligence. Others believe the driftings of the 
continents may have produced at least some of the Earth’s various extinction events. In 
November of 2002, Tony Dickson of Cambridge University in England produced a report, 
published in the journal Science, strongly suggesting that there may well be a relationship 
between the history of rocks and the history of life. What Dickson established was that the 
chemical composition of the world’s oceans has altered abruptly and vigorously throughout 
the past half billion years and that these changes often correlate with important events in 
biological history—the huge outburst of tiny organisms that created the chalk cliffs of 
England’s south coast, the sudden fashion for shells among marine organisms during the 



Cambrian period, and so on. No one can say what causes the oceans’ chemistry to change so 
dramatically from time to time, but the opening and shutting of ocean ridges would be an 
obvious possible culprit. 

  

    At all events, plate tectonics not only explained the surface dynamics of the Earth—how an 
ancient Hipparion got from France to Florida, for example—but also many of its internal 
actions. Earthquakes, the formation of island chains, the carbon cycle, the locations of 
mountains, the coming of ice ages, the origins of life itself—there was hardly a matter that 
wasn’t directly influenced by this remarkable new theory. Geologists, as McPhee has noted, 
found themselves in the giddying position that “the whole earth suddenly made sense.” 

    But only up to a point. The distribution of continents in former times is much less neatly 
resolved than most people outside geophysics think. Although textbooks give confident-
looking representations of ancient landmasses with names like Laurasia, Gondwana, Rodinia, 
and Pangaea, these are sometimes based on conclusions that don’t altogether hold up. As 
George Gaylord Simpson observes in Fossils and the History of Life, species of plants and 
animals from the ancient world have a habit of appearing inconveniently where they shouldn’t 
and failing to be where they ought. 

    The outline of Gondwana, a once-mighty continent connecting Australia, Africa, 
Antarctica, and South America, was based in large part on the distribution of a genus of 
ancient tongue fern called Glossopteris, which was found in all the right places. However, 
much later Glossopteris was also discovered in parts of the world that had no known 
connection to Gondwana. This troubling discrepancy was—and continues to be—mostly 
ignored. Similarly a Triassic reptile called Lystrosaurus has been found from Antarctica all 
the way to Asia, supporting the idea of a former connection between those continents, but it 
has never turned up in South America or Australia, which are believed to have been part of 
the same continent at the same time. 

    There are also many surface features that tectonics can’t explain. Take Denver. It is, as 
everyone knows, a mile high, but that rise is comparatively recent. When dinosaurs roamed 
the Earth, Denver was part of an ocean bottom, many thousands of feet lower. Yet the rocks 
on which Denver sits are not fractured or deformed in the way they would be if Denver had 
been pushed up by colliding plates, and anyway Denver was too far from the plate edges to be 
susceptible to their actions. It would be as if you pushed against the edge of a rug hoping to 
raise a ruck at the opposite end. Mysteriously and over millions of years, it appears that 
Denver has been rising, like baking bread. So, too, has much of southern Africa; a portion of 
it a thousand miles across has risen nearly a mile in 100 million years without any known 
associated tectonic activity. Australia, meanwhile, has been tilting and sinking. Over the past 
100 million years as it has drifted north toward Asia, its leading edge has sunk by some six 
hundred feet. It appears that Indonesia is very slowly drowning, and dragging Australia down 
with it. Nothing in the theories of tectonics can explain any of this. 

  

    Alfred Wegener never lived to see his ideas vindicated. On an expedition to Greenland in 
1930, he set out alone, on his fiftieth birthday, to check out a supply drop. He never returned. 
He was found a few days later, frozen to death on the ice. He was buried on the spot and lies 
there yet, but about a yard closer to North America than on the day he died. 



    Einstein also failed to live long enough to see that he had backed the wrong horse. In fact, 
he died at Princeton, New Jersey, in 1955 before Charles Hapgood’s rubbishing of continental 
drift theories was even published. 

    The other principal player in the emergence of tectonics theory, Harry Hess, was also at 
Princeton at the time, and would spend the rest of his career there. One of his students was a 
bright young fellow named Walter Alvarez, who would eventually change the world of 
science in a quite different way. 

    As for geology itself, its cataclysms had only just begun, and it was young Alvarez who 
helped to start the process. 

 

 

 



 

 

 

 

PART IV      DANGEROUS PLANET 

 

 

 

   The history of any one part of the  
   Earth, like the life of a soldier, consists  
   of long periods of boredom and  
   short periods of terror. 
 
     -British geologist Derek V. Ager 
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PEOPLE KNEW FOR a long time that there was something odd about the earth beneath 
Manson, Iowa. In 1912, a man drilling a well for the town water supply reported bringing up a 
lot of strangely deformed rock—“crystalline clast breccia with a melt matrix” and “overturned 
ejecta flap,” as it was later described in an official report. The water was odd too. It was 
almost as soft as rainwater. Naturally occurring soft water had never been found in Iowa 
before. 

    Though Manson’s strange rocks and silken waters were matters of curiosity, forty-one 
years would pass before a team from the University of Iowa got around to making a trip to the 
community, then as now a town of about two thousand people in the northwest part of the 
state. In 1953, after sinking a series of experimental bores, university geologists agreed that 
the site was indeed anomalous and attributed the deformed rocks to some ancient, unspecified 
volcanic action. This was in keeping with the wisdom of the day, but it was also about as 
wrong as a geological conclusion can get. 

    The trauma to Manson’s geology had come not from within the Earth, but from at least 100 
million miles beyond. Sometime in the very ancient past, when Manson stood on the edge of a 
shallow sea, a rock about a mile and a half across, weighing ten billion tons and traveling at 
perhaps two hundred times the speed of sound ripped through the atmosphere and punched 
into the Earth with a violence and suddenness that we can scarcely imagine. Where Manson 
now stands became in an instant a hole three miles deep and more than twenty miles across. 
The limestone that elsewhere gives Iowa its hard mineralized water was obliterated and 
replaced by the shocked basement rocks that so puzzled the water driller in 1912. 

    The Manson impact was the biggest thing that has ever occurred on the mainland United 
States. Of any type. Ever. The crater it left behind was so colossal that if you stood on one 
edge you would only just be able to see the other side on a good day. It would make the Grand 
Canyon look quaint and trifling. Unfortunately for lovers of spectacle, 2.5 million years of 
passing ice sheets filled the Manson crater right to the top with rich glacial till, then graded it 
smooth, so that today the landscape at Manson, and for miles around, is as flat as a tabletop. 
Which is of course why no one has ever heard of the Manson crater. 

    At the library in Manson they are delighted to show you a collection of newspaper articles 
and a box of core samples from a 1991–92 drilling program—indeed, they positively bustle to 
produce them—but you have to ask to see them. Nothing permanent is on display, and 
nowhere in the town is there any historical marker. 

    To most people in Manson the biggest thing ever to happen was a tornado that rolled up 
Main Street in 1979, tearing apart the business district. One of the advantages of all that 
surrounding flatness is that you can see danger from a long way off. Virtually the whole town 
turned out at one end of Main Street and watched for half an hour as the tornado came toward 



them, hoping it would veer off, then prudently scampered when it did not. Four of them, alas, 
didn’t move quite fast enough and were killed. Every June now Manson has a weeklong event 
called Crater Days, which was dreamed up as a way of helping people forget that unhappy 
anniversary. It doesn’t really have anything to do with the crater. Nobody’s figured out a way 
to capitalize on an impact site that isn’t visible. 

    “Very occasionally we get people coming in and asking where they should go to see the 
crater and we have to tell them that there is nothing to see,” says Anna Schlapkohl, the town’s 
friendly librarian. “Then they go away kind of disappointed.” However, most people, 
including most Iowans, have never heard of the Manson crater. Even for geologists it barely 
rates a footnote. But for one brief period in the 1980s, Manson was the most geologically 
exciting place on Earth. 

    The story begins in the early 1950s when a bright young geologist named Eugene 
Shoemaker paid a visit to Meteor Crater in Arizona. Today Meteor Crater is the most famous 
impact site on Earth and a popular tourist attraction. In those days, however, it didn’t receive 
many visitors and was still often referred to as Barringer Crater, after a wealthy mining 
engineer named Daniel M. Barringer who had staked a claim on it in 1903. Barringer believed 
that the crater had been formed by a ten-million-ton meteor, heavily freighted with iron and 
nickel, and it was his confident expectation that he would make a fortune digging it out. 
Unaware that the meteor and everything in it would have been vaporized on impact, he 
wasted a fortune, and the next twenty-six years, cutting tunnels that yielded nothing. 

    By the standards of today, crater research in the early 1900s was a trifle unsophisticated, to 
say the least. The leading early investigator, G. K. Gilbert of Columbia University, modeled 
the effects of impacts by flinging marbles into pans of oatmeal. (For reasons I cannot supply, 
Gilbert conducted these experiments not in a laboratory at Columbia but in a hotel room.) 
Somehow from this Gilbert concluded that the Moon’s craters were indeed formed by 
impacts—in itself quite a radical notion for the time—but that the Earth’s were not. Most 
scientists refused to go even that far. To them, the Moon’s craters were evidence of ancient 
volcanoes and nothing more. The few craters that remained evident on Earth (most had been 
eroded away) were generally attributed to other causes or treated as fluky rarities. 

    By the time Shoemaker came along, a common view was that Meteor Crater had been 
formed by an underground steam explosion. Shoemaker knew nothing about underground 
steam explosions—he couldn’t: they don’t exist—but he did know all about blast zones. One 
of his first jobs out of college was to study explosion rings at the Yucca Flats nuclear test site 
in Nevada. He concluded, as Barringer had before him, that there was nothing at Meteor 
Crater to suggest volcanic activity, but that there were huge distributions of other stuff—
anomalous fine silicas and magnetites principally—that suggested an impact from space. 
Intrigued, he began to study the subject in his spare time. 

    Working first with his colleague Eleanor Helin and later with his wife, Carolyn, and 
associate David Levy, Shoemaker began a systematic survey of the inner solar system. They 
spent one week each month at the Palomar Observatory in California looking for objects, 
asteroids primarily, whose trajectories carried them across Earth’s orbit. 

    “At the time we started, only slightly more than a dozen of these things had ever been 
discovered in the entire course of astronomical observation,” Shoemaker recalled some years 
later in a television interview. “Astronomers in the twentieth century essentially abandoned 
the solar system,” he added. “Their attention was turned to the stars, the galaxies.” 



    What Shoemaker and his colleagues found was that there was more risk out there—a great 
deal more—than anyone had ever imagined. 

    Asteroids, as most people know, are rocky objects orbiting in loose formation in a belt 
between Mars and Jupiter. In illustrations they are always shown as existing in a jumble, but 
in fact the solar system is quite a roomy place and the average asteroid actually will be about 
a million miles from its nearest neighbor. Nobody knows even approximately how many 
asteroids there are tumbling through space, but the number is thought to be probably not less 
than a billion. They are presumed to be planets that never quite made it, owing to the 
unsettling gravitational pull of Jupiter, which kept—and keeps—them from coalescing. 

    When asteroids were first detected in the 1800s—the very first was discovered on the first 
day of the century by a Sicilian named Giuseppi Piazzi—they were thought to be planets, and 
the first two were named Ceres and Pallas. It took some inspired deductions by the 
astronomer William Herschel to work out that they were nowhere near planet sized but much 
smaller. He called them asteroids—Latin for “starlike”—which was slightly unfortunate as 
they are not like stars at all. Sometimes now they are more accurately called planetoids. 

    Finding asteroids became a popular activity in the 1800s, and by the end of the century 
about a thousand were known. The problem was that no one was systematically recording 
them. By the early 1900s, it had often become impossible to know whether an asteroid that 
popped into view was new or simply one that had been noted earlier and then lost track of. By 
this time, too, astrophysics had moved on so much that few astronomers wanted to devote 
their lives to anything as mundane as rocky planetoids. Only a few astronomers, notably 
Gerard Kuiper, the Dutch-born astronomer for whom the Kuiper belt of comets is named, 
took any interest in the solar system at all. Thanks to his work at the McDonald Observatory 
in Texas, followed later by work done by others at the Minor Planet Center in Cincinnati and 
the Spacewatch project in Arizona, a long list of lost asteroids was gradually whittled down 
until by the close of the twentieth century only one known asteroid was unaccounted for—an 
object called 719 Albert. Last seen in October 1911, it was finally tracked down in 2000 after 
being missing for eighty-nine years. 

    So from the point of view of asteroid research the twentieth century was essentially just a 
long exercise in bookkeeping. It is really only in the last few years that astronomers have 
begun to count and keep an eye on the rest of the asteroid community. As of July 2001, 
twenty-six thousand asteroids had been named and identified—half in just the previous two 
years. With up to a billion to identify, the count obviously has barely begun. 

    In a sense it hardly matters. Identifying an asteroid doesn’t make it safe. Even if every 
asteroid in the solar system had a name and known orbit, no one could say what perturbations 
might send any of them hurtling toward us. We can’t forecast rock disturbances on our own 
surface. Put them adrift in space and what they might do is beyond guessing. Any asteroid out 
there that has our name on it is very likely to have no other. 

    Think of the Earth’s orbit as a kind of freeway on which we are the only vehicle, but which 
is crossed regularly by pedestrians who don’t know enough to look before stepping off the 
curb. At least 90 percent of these pedestrians are quite unknown to us. We don’t know where 
they live, what sort of hours they keep, how often they come our way. All we know is that at 
some point, at uncertain intervals, they trundle across the road down which we are cruising at 
sixty-six thousand miles an hour. As Steven Ostro of the Jet Propulsion Laboratory has put it, 
“Suppose that there was a button you could push and you could light up all the Earth-crossing 



asteroids larger than about ten meters, there would be over 100 million of these objects in the 
sky.” In short, you would see not a couple of thousand distant twinkling stars, but millions 
upon millions upon millions of nearer, randomly moving objects—“all of which are capable 
of colliding with the Earth and all of which are moving on slightly different courses through 
the sky at different rates. It would be deeply unnerving.” Well, be unnerved because it is 
there. We just can’t see it. 

    Altogether it is thought—though it is really only a guess, based on extrapolating from 
cratering rates on the Moon—that some two thousand asteroids big enough to imperil 
civilized existence regularly cross our orbit. But even a small asteroid—the size of a house, 
say—could destroy a city. The number of these relative tiddlers in Earth-crossing orbits is 
almost certainly in the hundreds of thousands and possibly in the millions, and they are nearly 
impossible to track. 

    The first one wasn’t spotted until 1991, and that was after it had already gone by. Named 
1991 BA, it was noticed as it sailed past us at a distance of 106,000 miles—in cosmic terms 
the equivalent of a bullet passing through one’s sleeve without touching the arm. Two years 
later, another, somewhat larger asteroid missed us by just 90,000 miles—the closest pass yet 
recorded. It, too, was not seen until it had passed and would have arrived without warning. 
According to Timothy Ferris, writing in the New Yorker, such near misses probably happen 
two or three times a week and go unnoticed. 

    An object a hundred yards across couldn’t be picked up by any Earth-based telescope until 
it was within just a few days of us, and that is only if a telescope happened to be trained on it, 
which is unlikely because even now the number of people searching for such objects is 
modest. The arresting analogy that is always made is that the number of people in the world 
who are actively searching for asteroids is fewer than the staff of a typical McDonald’s 
restaurant. (It is actually somewhat higher now. But not much.) 

  

    While Gene Shoemaker was trying to get people galvanized about the potential dangers of 
the inner solar system, another development—wholly unrelated on the face of it—was quietly 
unfolding in Italy with the work of a young geologist from the Lamont Doherty Laboratory at 
Columbia University. In the early 1970s, Walter Alvarez was doing fieldwork in a comely 
defile known as the Bottaccione Gorge, near the Umbrian hill town of Gubbio, when he grew 
curious about a thin band of reddish clay that divided two ancient layers of limestone—one 
from the Cretaceous period, the other from the Tertiary. This is a point known to geology as 
the KT boundary,1 and it marks the time, sixty-five million years ago, when the dinosaurs and 
roughly half the world’s other species of animals abruptly vanish from the fossil record. 
Alvarez wondered what it was about a thin lamina of clay, barely a quarter of an inch thick, 
that could account for such a dramatic moment in Earth’s history. 

    At the time the conventional wisdom about the dinosaur extinction was the same as it had 
been in Charles Lyell’s day a century earlier—namely that the dinosaurs had died out over 
millions of years. But the thinness of the clay layer clearly suggested that in Umbria, if 

                                                 
1 It is KT rather than CT because C had already been appropriated for Cambrian. Depending on which source 
you credit, the K comes either from the Greek Kreta or German Kreide. Both conveniently mean “chalk,” which 
is also what Cretaceous means.  
 



nowhere else, something rather more abrupt had happened. Unfortunately in the 1970s no 
tests existed for determining how long such a deposit might have taken to accumulate. 

    In the normal course of things, Alvarez almost certainly would have had to leave the 
problem at that, but luckily he had an impeccable connection to someone outside his 
discipline who could help—his father, Luis. Luis Alvarez was an eminent nuclear physicist; 
he had won the Nobel Prize for physics the previous decade. He had always been mildly 
scornful of his son’s attachment to rocks, but this problem intrigued him. It occurred to him 
that the answer might lie in dust from space. 

    Every year the Earth accumulates some thirty thousand metric tons of “cosmic 
spherules”—space dust in plainer language—which would be quite a lot if you swept it into 
one pile, but is infinitesimal when spread across the globe. Scattered through this thin dusting 
are exotic elements not normally much found on Earth. Among these is the element iridium, 
which is a thousand times more abundant in space than in the Earth’s crust (because, it is 
thought, most of the iridium on Earth sank to the core when the planet was young). 

    Alvarez knew that a colleague of his at the Lawrence Berkeley Laboratory in California, 
Frank Asaro, had developed a technique for measuring very precisely the chemical 
composition of clays using a process called neutron activation analysis. This involved 
bombarding samples with neutrons in a small nuclear reactor and carefully counting the 
gamma rays that were emitted; it was extremely finicky work. Previously Asaro had used the 
technique to analyze pieces of pottery, but Alvarez reasoned that if they measured the amount 
of one of the exotic elements in his son’s soil samples and compared that with its annual rate 
of deposition, they would know how long it had taken the samples to form. On an October 
afternoon in 1977, Luis and Walter Alvarez dropped in on Asaro and asked him if he would 
run the necessary tests for them. 

    It was really quite a presumptuous request. They were asking Asaro to devote months to 
making the most painstaking measurements of geological samples merely to confirm what 
seemed entirely self-evident to begin with—that the thin layer of clay had been formed as 
quickly as its thinness suggested. Certainly no one expected his survey to yield any dramatic 
breakthroughs. 

    “Well, they were very charming, very persuasive,” Asaro recalled in an interview in 2002. 
“And it seemed an interesting challenge, so I agreed to try. Unfortunately, I had a lot of other 
work on, so it was eight months before I could get to it.” He consulted his notes from the 
period. “On June 21, 1978, at 1:45 p.m., we put a sample in the detector. It ran for 224 
minutes and we could see we were getting interesting results, so we stopped it and had a 
look.” 

    The results were so unexpected, in fact, that the three scientists at first thought they had to 
be wrong. The amount of iridium in the Alvarez sample was more than three hundred times 
normal levels—far beyond anything they might have predicted. Over the following months 
Asaro and his colleague Helen Michel worked up to thirty hours at a stretch (“Once you 
started you couldn’t stop,” Asaro explained) analyzing samples, always with the same results. 
Tests on other samples—from Denmark, Spain, France, New Zealand, Antarctica—showed 
that the iridium deposit was worldwide and greatly elevated everywhere, sometimes by as 
much as five hundred times normal levels. Clearly something big and abrupt, and probably 
cataclysmic, had produced this arresting spike. 



    After much thought, the Alvarezes concluded that the most plausible explanation—
plausible to them, at any rate—was that the Earth had been struck by an asteroid or comet. 

    The idea that the Earth might be subjected to devastating impacts from time to time was not 
quite as new as it is now sometimes presented. As far back as 1942, a Northwestern 
University astrophysicist named Ralph B. Baldwin had suggested such a possibility in an 
article in Popular Astronomy magazine. (He published the article there because no academic 
publisher was prepared to run it.) And at least two well-known scientists, the astronomer 
Ernst Öpik and the chemist and Nobel laureate Harold Urey, had also voiced support for the 
notion at various times. Even among paleontologists it was not unknown. In 1956 a professor 
at Oregon State University, M. W. de Laubenfels, writing in the Journal of Paleontology, had 
actually anticipated the Alvarez theory by suggesting that the dinosaurs may have been dealt a 
death blow by an impact from space, and in 1970 the president of the American 
Paleontological Society, Dewey J. McLaren, proposed at the group’s annual conference the 
possibility that an extraterrestrial impact may have been the cause of an earlier event known 
as the Frasnian extinction. 

    As if to underline just how un-novel the idea had become by this time, in 1979 a 
Hollywood studio actually produced a movie called Meteor (“It’s five miles wide . . . It’s 
coming at 30,000 m.p.h.—and there’s no place to hide!”) starring Henry Fonda, Natalie 
Wood, Karl Malden, and a very large rock. 

    So when, in the first week of 1980, at a meeting of the American Association for the 
Advancement of Science, the Alvarezes announced their belief that the dinosaur extinction 
had not taken place over millions of years as part of some slow inexorable process, but 
suddenly in a single explosive event, it shouldn’t have come as a shock. 

    But it did. It was received everywhere, but particularly in the paleontological community, 
as an outrageous heresy. 

    “Well, you have to remember,” Asaro recalls, “that we were amateurs in this field. Walter 
was a geologist specializing in paleomagnetism, Luis was a physicist and I was a nuclear 
chemist. And now here we were telling paleontologists that we had solved a problem that had 
eluded them for over a century. It’s not terribly surprising that they didn’t embrace it 
immediately.” As Luis Alvarez joked: “We were caught practicing geology without a 
license.” 

    But there was also something much deeper and more fundamentally abhorrent in the impact 
theory. The belief that terrestrial processes were gradual had been elemental in natural history 
since the time of Lyell. By the 1980s, catastrophism had been out of fashion for so long that it 
had become literally unthinkable. For most geologists the idea of a devastating impact was, as 
Eugene Shoemaker noted, “against their scientific religion.” 

    Nor did it help that Luis Alvarez was openly contemptuous of paleontologists and their 
contributions to scientific knowledge. “They’re really not very good scientists. They’re more 
like stamp collectors,” he wrote in the New York Times in an article that stings yet. 

    Opponents of the Alvarez theory produced any number of alternative explanations for the 
iridium deposits—for instance, that they were generated by prolonged volcanic eruptions in 
India called the Deccan Traps—and above all insisted that there was no proof that the 
dinosaurs disappeared abruptly from the fossil record at the iridium boundary. One of the 



most vigorous opponents was Charles Officer of Dartmouth College. He insisted that the 
iridium had been deposited by volcanic action even while conceding in a newspaper interview 
that he had no actual evidence of it. As late as 1988 more than half of all American 
paleontologists contacted in a survey continued to believe that the extinction of the dinosaurs 
was in no way related to an asteroid or cometary impact. 

    The one thing that would most obviously support the Alvarezes’ theory was the one thing 
they didn’t have—an impact site. Enter Eugene Shoemaker. Shoemaker had an Iowa 
connection—his daughter-in-law taught at the University of Iowa—and he was familiar with 
the Manson crater from his own studies. Thanks to him, all eyes now turned to Iowa. 

  

    Geology is a profession that varies from place to place. In Iowa, a state that is flat and 
stratigraphically uneventful, it tends to be comparatively serene. There are no Alpine peaks or 
grinding glaciers, no great deposits of oil or precious metals, not a hint of a pyroclastic flow. 
If you are a geologist employed by the state of Iowa, a big part of the work you do is to 
evaluate Manure Management Plans, which all the state’s “animal confinement operators”—
hog farmers to the rest of us—are required to file periodically. There are fifteen million hogs 
in Iowa, so a lot of manure to manage. I’m not mocking this at all—it’s vital and enlightened 
work; it keeps Iowa’s water clean—but with the best will in the world it’s not exactly dodging 
lava bombs on Mount Pinatubo or scrabbling over crevasses on the Greenland ice sheet in 
search of ancient life-bearing quartzes. So we may well imagine the flutter of excitement that 
swept through the Iowa Department of Natural Resources when in the mid-1980s the world’s 
geological attention focused on Manson and its crater. 

    Trowbridge Hall in Iowa City is a turn-of-the-century pile of red brick that houses the 
University of Iowa’s Earth Sciences department and—way up in a kind of garret—the 
geologists of the Iowa Department of Natural Resources. No one now can remember quite 
when, still less why, the state geologists were placed in an academic facility, but you get the 
impression that the space was conceded grudgingly, for the offices are cramped and low-
ceilinged and not very accessible. When being shown the way, you half expect to be taken out 
onto a roof ledge and helped in through a window. 

    Ray Anderson and Brian Witzke spend their working lives up here amid disordered heaps 
of papers, journals, furled charts, and hefty specimen stones. (Geologists are never at a loss 
for paperweights.) It’s the kind of space where if you want to find anything—an extra chair, a 
coffee cup, a ringing telephone—you have to move stacks of documents around. 

    “Suddenly we were at the center of things,” Anderson told me, gleaming at the memory of 
it, when I met him and Witzke in their offices on a dismal, rainy morning in June. “It was a 
wonderful time.” 

    I asked them about Gene Shoemaker, a man who seems to have been universally revered. 
“He was just a great guy,” Witzke replied without hesitation. “If it hadn’t been for him, the 
whole thing would never have gotten off the ground. Even with his support, it took two years 
to get it up and running. Drilling’s an expensive business—about thirty-five dollars a foot 
back then, more now, and we needed to go down three thousand feet.” 

    “Sometimes more than that,” Anderson added. 



    “Sometimes more than that,” Witzke agreed. “And at several locations. So you’re talking a 
lot of money. Certainly more than our budget would allow.” 

    So a collaboration was formed between the Iowa Geological Survey and the U.S. 
Geological Survey. 

    “At least we thought it was a collaboration,” said Anderson, producing a small pained 
smile. 

    “It was a real learning curve for us,” Witzke went on. “There was actually quite a lot of bad 
science going on throughout the period—people rushing in with results that didn’t always 
stand up to scrutiny.” One of those moments came at the annual meeting of the American 
Geophysical Union in 1985, when Glenn Izett and C. L. Pillmore of the U.S. Geological 
Survey announced that the Manson crater was of the right age to have been involved with the 
dinosaurs’ extinction. The declaration attracted a good deal of press attention but was 
unfortunately premature. A more careful examination of the data revealed that Manson was 
not only too small, but also nine million years too early. 

    The first Anderson or Witzke learned of this setback to their careers was when they arrived 
at a conference in South Dakota and found people coming up to them with sympathetic looks 
and saying: “We hear you lost your crater.” It was the first they knew that Izett and the other 
USGS scientists had just announced refined figures revealing that Manson couldn’t after all 
have been the extinction crater. 

    “It was pretty stunning,” recalls Anderson. “I mean, we had this thing that was really 
important and then suddenly we didn’t have it anymore. But even worse was the realization 
that the people we thought we’d been collaborating with hadn’t bothered to share with us their 
new findings.” 

    “Why not?” 

    He shrugged. “Who knows? Anyway, it was a pretty good insight into how unattractive 
science can get when you’re playing at a certain level.” 

    The search moved elsewhere. By chance in 1990 one of the searchers, Alan Hildebrand of 
the University of Arizona, met a reporter from the Houston Chronicle who happened to know 
about a large, unexplained ring formation, 120 miles wide and 30 miles deep, under Mexico’s 
Yucatán Peninsula at Chicxulub, near the city of Progreso, about 600 miles due south of New 
Orleans. The formation had been found by Pemex, the Mexican oil company, in 1952—the 
year, coincidentally, that Gene Shoemaker first visited Meteor Crater in Arizona—but the 
company’s geologists had concluded that it was volcanic, in line with the thinking of the day. 
Hildebrand traveled to the site and decided fairly swiftly that they had their crater. By early 
1991 it had been established to nearly everyone’s satisfaction that Chicxulub was the impact 
site. 

    Still, many people didn’t quite grasp what an impact could do. As Stephen Jay Gould 
recalled in one of his essays: “I remember harboring some strong initial doubts about the 
efficacy of such an event . . . [W]hy should an object only six miles across wreak such havoc 
upon a planet with a diameter of eight thousand miles?” 



    Conveniently a natural test of the theory arose when the Shoemakers and Levy discovered 
Comet Shoemaker-Levy 9, which they soon realized was headed for Jupiter. For the first time, 
humans would be able to witness a cosmic collision—and witness it very well thanks to the 
new Hubble space telescope. Most astronomers, according to Curtis Peebles, expected little, 
particularly as the comet was not a coherent sphere but a string of twenty-one fragments. “My 
sense,” wrote one, “is that Jupiter will swallow these comets up without so much as a burp.” 
One week before the impact, Nature ran an article, “The Big Fizzle Is Coming,” predicting 
that the impact would constitute nothing more than a meteor shower. 

   The impacts began on July 16, 1994, went on for a week and were bigger by far than 
anyone—with the possible exception of Gene Shoemaker—expected. One fragment, known 
as Nucleus G, struck with the force of about six million megatons—seventy-five times more 
than all the nuclear weaponry in existence. Nucleus G was only about the size of a small 
mountain, but it created wounds in the Jovian surface the size of Earth. It was the final blow 
for critics of the Alvarez theory. 

    Luis Alvarez never knew of the discovery of the Chicxulub crater or of the Shoemaker-
Levy comet, as he died in 1988. Shoemaker also died early. On the third anniversary of the 
Shoemaker-Levy impact, he and his wife were in the Australian outback, where they went 
every year to search for impact sites. On a dirt track in the Tanami Desert—normally one of 
the emptiest places on Earth—they came over a slight rise just as another vehicle was 
approaching. Shoemaker was killed instantly, his wife injured. Part of his ashes were sent to 
the Moon aboard the Lunar Prospector spacecraft. The rest were scattered around Meteor 
Crater. 

  

    Anderson and Witzke no longer had the crater that killed the dinosaurs, “but we still had 
the largest and most perfectly preserved impact crater in the mainland United States,” 
Anderson said. (A little verbal dexterity is required to keep Manson’s superlative status. Other 
craters are larger—notably, Chesapeake Bay, which was recognized as an impact site in 
1994—but they are either offshore or deformed.) “Chicxulub is buried under two to three 
kilometers of limestone and mostly offshore, which makes it difficult to study,” Anderson 
went on, “while Manson is really quite accessible. It’s because it is buried that it is actually 
comparatively pristine.” 

    I asked them how much warning we would receive if a similar hunk of rock was coming 
toward us today. 

    “Oh, probably none,” said Anderson breezily. “It wouldn’t be visible to the naked eye until 
it warmed up, and that wouldn’t happen until it hit the atmosphere, which would be about one 
second before it hit the Earth. You’re talking about something moving many tens of times 
faster than the fastest bullet. Unless it had been seen by someone with a telescope, and that’s 
by no means a certainty, it would take us completely by surprise.” 

    How hard an impactor hits depends on a lot of variables—angle of entry, velocity and 
trajectory, whether the collision is head-on or from the side, and the mass and density of the 
impacting object, among much else—none of which we can know so many millions of years 
after the fact. But what scientists can do—and Anderson and Witzke have done—is measure 
the impact site and calculate the amount of energy released. From that they can work out 



plausible scenarios of what it must have been like—or, more chillingly, would be like if it 
happened now. 

    An asteroid or comet traveling at cosmic velocities would enter the Earth’s atmosphere at 
such a speed that the air beneath it couldn’t get out of the way and would be compressed, as in 
a bicycle pump. As anyone who has used such a pump knows, compressed air grows swiftly 
hot, and the temperature below it would rise to some 60,000 Kelvin, or ten times the surface 
temperature of the Sun. In this instant of its arrival in our atmosphere, everything in the 
meteor’s path—people, houses, factories, cars—would crinkle and vanish like cellophane in a 
flame. 

    One second after entering the atmosphere, the meteorite would slam into the Earth’s 
surface, where the people of Manson had a moment before been going about their business. 
The meteorite itself would vaporize instantly, but the blast would blow out a thousand cubic 
kilometers of rock, earth, and superheated gases. Every living thing within 150 miles that 
hadn’t been killed by the heat of entry would now be killed by the blast. Radiating outward at 
almost the speed of light would be the initial shock wave, sweeping everything before it. 

    For those outside the zone of immediate devastation, the first inkling of catastrophe would 
be a flash of blinding light—the brightest ever seen by human eyes—followed an instant to a 
minute or two later by an apocalyptic sight of unimaginable grandeur: a roiling wall of 
darkness reaching high into the heavens, filling an entire field of view and traveling at 
thousands of miles an hour. Its approach would be eerily silent since it would be moving far 
beyond the speed of sound. Anyone in a tall building in Omaha or Des Moines, say, who 
chanced to look in the right direction would see a bewildering veil of turmoil followed by 
instantaneous oblivion. 

    Within minutes, over an area stretching from Denver to Detroit and encompassing what had 
once been Chicago, St. Louis, Kansas City, the Twin Cities—the whole of the Midwest, in 
short—nearly every standing thing would be flattened or on fire, and nearly every living thing 
would be dead. People up to a thousand miles away would be knocked off their feet and sliced 
or clobbered by a blizzard of flying projectiles. Beyond a thousand miles the devastation from 
the blast would gradually diminish. 

    But that’s just the initial shockwave. No one can do more than guess what the associated 
damage would be, other than that it would be brisk and global. The impact would almost 
certainly set off a chain of devastating earthquakes. Volcanoes across the globe would begin 
to rumble and spew. Tsunamis would rise up and head devastatingly for distant shores. Within 
an hour, a cloud of blackness would cover the planet, and burning rock and other debris 
would be pelting down everywhere, setting much of the planet ablaze. It has been estimated 
that at least a billion and a half people would be dead by the end of the first day. The massive 
disturbances to the ionosphere would knock out communications systems everywhere, so 
survivors would have no idea what was happening elsewhere or where to turn. It would hardly 
matter. As one commentator has put it, fleeing would mean “selecting a slow death over a 
quick one. The death toll would be very little affected by any plausible relocation effort, since 
Earth’s ability to support life would be universally diminished.” 

    The amount of soot and floating ash from the impact and following fires would blot out the 
sun, certainly for months, possibly for years, disrupting growing cycles. In 2001 researchers at 
the California Institute of Technology analyzed helium isotopes from sediments left from the 
later KT impact and concluded that it affected Earth’s climate for about ten thousand years.    



This was actually used as evidence to support the notion that the extinction of dinosaurs was 
swift and emphatic—and so it was in geological terms. We can only guess how well, or 
whether, humanity would cope with such an event. 

    And in all likelihood, remember, this would come without warning, out of a clear sky. 

    But let’s assume we did see the object coming. What would we do? Everyone assumes we 
would send up a nuclear warhead and blast it to smithereens. The idea has some problems, 
however. First, as John S. Lewis notes, our missiles are not designed for space work. They 
haven’t the oomph to escape Earth’s gravity and, even if they did, there are no mechanisms to 
guide them across tens of millions of miles of space. Still less could we send up a shipload of 
space cowboys to do the job for us, as in the movie Armageddon; we no longer possess a 
rocket powerful enough to send humans even as far as the Moon. The last rocket that could, 
Saturn 5, was retired years ago and has never been replaced. Nor could we quickly build a 
new one because, amazingly, the plans for Saturn launchers were destroyed as part of a 
NASA housecleaning exercise. 

    Even if we did manage somehow to get a warhead to the asteroid and blasted it to pieces, 
the chances are that we would simply turn it into a string of rocks that would slam into us one 
after the other in the manner of Comet Shoemaker-Levy on Jupiter—but with the difference 
that now the rocks would be intensely radioactive. Tom Gehrels, an asteroid hunter at the 
University of Arizona, thinks that even a year’s warning would probably be insufficient to 
take appropriate action. The greater likelihood, however, is that we wouldn’t see any object—
even a comet—until it was about six months away, which would be much too late. 
Shoemaker-Levy 9 had been orbiting Jupiter in a fairly conspicuous manner since 1929, but it 
took over half a century before anyone noticed. 

    Interestingly, because these things are so difficult to compute and must incorporate such a 
significant margin of error, even if we knew an object was heading our way we wouldn’t 
know until nearly the end—the last couple of weeks anyway—whether collision was certain. 
For most of the time of the object’s approach we would exist in a kind of cone of uncertainty. 
It would certainly be the most interesting few months in the history of the world. And imagine 
the party if it passed safely. 

    “So how often does something like the Manson impact happen?” I asked Anderson and 
Witzke before leaving. 

    “Oh, about once every million years on average,” said Witzke. 

    “And remember,” added Anderson, “this was a relatively minor event. Do you know how 
many extinctions were associated with the Manson impact?” 

    “No idea,” I replied. 

    “None,” he said, with a strange air of satisfaction. “Not one.” 

    Of course, Witzke and Anderson added hastily and more or less in unison, there would 
have been terrible devastation across much of the Earth, as just described, and complete 
annihilation for hundreds of miles around ground zero. But life is hardy, and when the smoke 
cleared there were enough lucky survivors from every species that none permanently 
perished. 



    The good news, it appears, is that it takes an awful lot to extinguish a species. The bad 
news is that the good news can never be counted on. Worse still, it isn’t actually necessary to 
look to space for petrifying danger. As we are about to see, Earth can provide plenty of danger 
of its own. 



14    THE FIRE BELOW 

 

 

 

 

IN THE SUMMER of 1971, a young geologist named Mike Voorhies was scouting around on 
some grassy farmland in eastern Nebraska, not far from the little town of Orchard, where he 
had grown up. Passing through a steep-sided gully, he spotted a curious glint in the brush 
above and clambered up to have a look. What he had seen was the perfectly preserved skull of 
a young rhinoceros, which had been washed out by recent heavy rains. 

    A few yards beyond, it turned out, was one of the most extraordinary fossil beds ever 
discovered in North America, a dried-up water hole that had served as a mass grave for scores 
of animals—rhinoceroses, zebra-like horses, saber-toothed deer, camels, turtles. All had died 
from some mysterious cataclysm just under twelve million years ago in the time known to 
geology as the Miocene. In those days Nebraska stood on a vast, hot plain very like the 
Serengeti of Africa today. The animals had been found buried under volcanic ash up to ten 
feet deep. The puzzle of it was that there were not, and never had been, any volcanoes in 
Nebraska. 

    Today, the site of Voorhies’s discovery is called Ashfall Fossil Beds State Park, and it has a 
stylish new visitors’ center and museum, with thoughtful displays on the geology of Nebraska 
and the history of the fossil beds. The center incorporates a lab with a glass wall through 
which visitors can watch paleontologists cleaning bones. Working alone in the lab on the 
morning I passed through was a cheerfully grizzled-looking fellow in a blue work shirt whom 
I recognized as Mike Voorhies from a BBC television documentary in which he featured. 
They don’t get a huge number of visitors to Ashfall Fossil Beds State Park—it’s slightly in 
the middle of nowhere—and Voorhies seemed pleased to show me around. He took me to the 
spot atop a twenty-foot ravine where he had made his find. 

    “It was a dumb place to look for bones,” he said happily. “But I wasn’t looking for bones. I 
was thinking of making a geological map of eastern Nebraska at the time, and really just kind 
of poking around. If I hadn’t gone up this ravine or the rains hadn’t just washed out that skull, 
I’d have walked on by and this would never have been found.” He indicated a roofed 
enclosure nearby, which had become the main excavation site. Some two hundred animals 
had been found lying together in a jumble. 

    I asked him in what way it was a dumb place to hunt for bones. “Well, if you’re looking for 
bones, you really need exposed rock. That’s why most paleontology is done in hot, dry places. 
It’s not that there are more bones there. It’s just that you have some chance of spotting them. 
In a setting like this”—he made a sweeping gesture across the vast and unvarying prairie—
“you wouldn’t know where to begin. There could be really magnificent stuff out there, but 
there’s no surface clues to show you where to start looking.” 

    At first they thought the animals were buried alive, and Voorhies stated as much in a 
National Geographic article in 1981. “The article called the site a ‘Pompeii of prehistoric 



animals,’ ” he told me, “which was unfortunate because just afterward we realized that the 
animals hadn’t died suddenly at all. They were all suffering from something called 
hypertrophic pulmonary osteodystrophy, which is what you would get if you were breathing a 
lot of abrasive ash—and they must have been breathing a lot of it because the ash was feet 
thick for hundreds of miles.” He picked up a chunk of grayish, claylike dirt and crumbled it 
into my hand. It was powdery but slightly gritty. “Nasty stuff to have to breathe,” he went on, 
“because it’s very fine but also quite sharp. So anyway they came here to this watering hole, 
presumably seeking relief, and died in some misery. The ash would have ruined everything. It 
would have buried all the grass and coated every leaf and turned the water into an undrinkable 
gray sludge. It couldn’t have been very agreeable at all.” 

    The BBC documentary had suggested that the existence of so much ash in Nebraska was a 
surprise. In fact, Nebraska’s huge ash deposits had been known about for a long time. For 
almost a century they had been mined to make household cleaning powders like Comet and 
Ajax. But curiously no one had ever thought to wonder where all the ash came from. 

    “I’m a little embarrassed to tell you,” Voorhies said, smiling briefly, “that the first I thought 
about it was when an editor at the National Geographic asked me the source of all the ash and 
I had to confess that I didn’t know. Nobody knew.” 

    Voorhies sent samples to colleagues all over the western United States asking if there was 
anything about it that they recognized. Several months later a geologist named Bill 
Bonnichsen from the Idaho Geological Survey got in touch and told him that the ash matched 
a volcanic deposit from a place called Bruneau-Jarbidge in southwest Idaho. The event that 
killed the plains animals of Nebraska was a volcanic explosion on a scale previously 
unimagined—but big enough to leave an ash layer ten feet deep almost a thousand miles away 
in eastern Nebraska. It turned out that under the western United States there was a huge 
cauldron of magma, a colossal volcanic hot spot, which erupted cataclysmically every 
600,000 years or so. The last such eruption was just over 600,000 years ago. The hot spot is 
still there. These days we call it Yellowstone National Park. 

  

    We know amazingly little about what happens beneath our feet. It is fairly remarkable to 
think that Ford has been building cars and baseball has been playing World Series for longer 
than we have known that the Earth has a core. And of course the idea that the continents move 
about on the surface like lily pads has been common wisdom for much less than a generation. 
“Strange as it may seem,” wrote Richard Feynman, “we understand the distribution of matter 
in the interior of the Sun far better than we understand the interior of the Earth.” 

    The distance from the surface of Earth to the center is 3,959 miles, which isn’t so very far. 
It has been calculated that if you sunk a well to the center and dropped a brick into it, it would 
take only forty-five minutes for it to hit the bottom (though at that point it would be 
weightless since all the Earth’s gravity would be above and around it rather than beneath it). 
Our own attempts to penetrate toward the middle have been modest indeed. One or two South 
African gold mines reach to a depth of two miles, but most mines on Earth go no more than 
about a quarter of a mile beneath the surface. If the planet were an apple, we wouldn’t yet 
have broken through the skin. Indeed, we haven’t even come close. 

    Until slightly under a century ago, what the best-informed scientific minds knew about 
Earth’s interior was not much more than what a coal miner knew—namely, that you could dig 



down through soil for a distance and then you’d hit rock and that was about it. Then in 1906, 
an Irish geologist named R. D. Oldham, while examining some seismograph readings from an 
earthquake in Guatemala, noticed that certain shock waves had penetrated to a point deep 
within the Earth and then bounced off at an angle, as if they had encountered some kind of 
barrier. From this he deduced that the Earth has a core. Three years later a Croatian 
seismologist named Andrija Mohoroviči´c was studying graphs from an earthquake in Zagreb 
when he noticed a similar odd deflection, but at a shallower level. He had discovered the 
boundary between the crust and the layer immediately below, the mantle; this zone has been 
known ever since as the Mohoroviči´c discontinuity, or Moho for short. 

    We were beginning to get a vague idea of the Earth’s layered interior—though it really was 
only vague. Not until 1936 did a Danish scientist named Inge Lehmann, studying 
seismographs of earthquakes in New Zealand, discover that there were two cores—an inner 
one that we now believe to be solid and an outer one (the one that Oldham had detected) that 
is thought to be liquid and the seat of magnetism. 

    At just about the time that Lehmann was refining our basic understanding of the Earth’s 
interior by studying the seismic waves of earthquakes, two geologists at Caltech in California 
were devising a way to make comparisons between one earthquake and the next. They were 
Charles Richter and Beno Gutenberg, though for reasons that have nothing to do with fairness 
the scale became known almost at once as Richter’s alone. (It has nothing to do with Richter 
either. A modest fellow, he never referred to the scale by his own name, but always called it 
“the Magnitude Scale.”) 

    The Richter scale has always been widely misunderstood by nonscientists, though perhaps 
a little less so now than in its early days when visitors to Richter’s office often asked to see 
his celebrated scale, thinking it was some kind of machine. The scale is of course more an 
idea than an object, an arbitrary measure of the Earth’s tremblings based on surface 
measurements. It rises exponentially, so that a 7.3 quake is fifty times more powerful than a 
6.3 earthquake and 2,500 times more powerful than a 5.3 earthquake. 

    At least theoretically, there is no upper limit for an earthquake—nor, come to that, a lower 
limit. The scale is a simple measure of force, but says nothing about damage. A magnitude 7 
quake happening deep in the mantle—say, four hundred miles down—might cause no surface 
damage at all, while a significantly smaller one happening just four miles under the surface 
could wreak widespread devastation. Much, too, depends on the nature of the subsoil, the 
quake’s duration, the frequency and severity of aftershocks, and the physical setting of the 
affected area. All this means that the most fearsome quakes are not necessarily the most 
forceful, though force obviously counts for a lot. 

    The largest earthquake since the scale’s invention was (depending on which source you 
credit) either one centered on Prince William Sound in Alaska in March 1964, which 
measured 9.2 on the Richter scale, or one in the Pacific Ocean off the coast of Chile in 1960, 
which was initially logged at 8.6 magnitude but later revised upward by some authorities 
(including the United States Geological Survey) to a truly grand-scale 9.5. As you will gather 
from this, measuring earthquakes is not always an exact science, particularly when 
interpreting readings from remote locations. At all events, both quakes were whopping. The 
1960 quake not only caused widespread damage across coastal South America, but also set off 
a giant tsunami that rolled six thousand miles across the Pacific and slapped away much of 
downtown Hilo, Hawaii, destroying five hundred buildings and killing sixty people. Similar 
wave surges claimed yet more victims as far away as Japan and the Philippines. 



    For pure, focused, devastation, however, probably the most intense earthquake in recorded 
history was one that struck—and essentially shook to pieces—Lisbon, Portugal, on All Saints 
Day (November 1), 1755. Just before ten in the morning, the city was hit by a sudden 
sideways lurch now estimated at magnitude 9.0 and shaken ferociously for seven full minutes. 
The convulsive force was so great that the water rushed out of the city’s harbor and returned 
in a wave fifty feet high, adding to the destruction. When at last the motion ceased, survivors 
enjoyed just three minutes of calm before a second shock came, only slightly less severe than 
the first. A third and final shock followed two hours later. At the end of it all, sixty thousand 
people were dead and virtually every building for miles reduced to rubble. The San Francisco 
earthquake of 1906, for comparison, measured an estimated 7.8 on the Richter scale and 
lasted less than thirty seconds. 

  

    Earthquakes are fairly common. Every day on average somewhere in the world there are 
two of magnitude 2.0 or greater—that’s enough to give anyone nearby a pretty good jolt. 
Although they tend to cluster in certain places—notably around the rim of the Pacific—they 
can occur almost anywhere. In the United States, only Florida, eastern Texas, and the upper 
Midwest seem—so far—to be almost entirely immune. New England has had two quakes of 
magnitude 6.0 or greater in the last two hundred years. In April 2002, the region experienced 
a 5.1 magnitude shaking in a quake near Lake Champlain on the New York–Vermont border, 
causing extensive local damage and (I can attest) knocking pictures from walls and children 
from beds as far away as New Hampshire. 

    The most common types of earthquakes are those where two plates meet, as in California 
along the San Andreas Fault. As the plates push against each other, pressures build up until 
one or the other gives way. In general, the longer the interval between quakes, the greater the 
pent-up pressure and thus the greater the scope for a really big jolt. This is a particular worry 
for Tokyo, which Bill McGuire, a hazards specialist at University College London, describes 
as “the city waiting to die” (not a motto you will find on many tourism leaflets). Tokyo stands 
on the boundary of three tectonic plates in a country already well known for its seismic 
instability. In 1995, as you will remember, the city of Kobe, three hundred miles to the west, 
was struck by a magnitude 7.2 quake, which killed 6,394 people. The damage was estimated 
at $99 billion. But that was as nothing—well, as comparatively little—compared with what 
may await Tokyo. 

    Tokyo has already suffered one of the most devastating earthquakes in modern times. On 
September 1, 1923, just before noon, the city was hit by what is known as the Great Kanto 
quake—an event more than ten times more powerful than Kobe’s earthquake. Two hundred 
thousand people were killed. Since that time, Tokyo has been eerily quiet, so the strain 
beneath the surface has been building for eighty years. Eventually it is bound to snap. In 1923, 
Tokyo had a population of about three million. Today it is approaching thirty million. Nobody 
cares to guess how many people might die, but the potential economic cost has been put as 
high as $7 trillion. 

    Even more unnerving, because they are less well understood and capable of occurring 
anywhere at any time, are the rarer type of shakings known as intraplate quakes. These 
happen away from plate boundaries, which makes them wholly unpredictable. And because 
they come from a much greater depth, they tend to propagate over much wider areas. The 
most notorious such quakes ever to hit the United States were a series of three in New 
Madrid, Missouri, in the winter of 1811–12. The adventure started just after midnight on 



December 16 when people were awakened first by the noise of panicking farm animals (the 
restiveness of animals before quakes is not an old wives’ tale, but is in fact well established, 
though not at all understood) and then by an almighty rupturing noise from deep within the 
Earth. Emerging from their houses, locals found the land rolling in waves up to three feet high 
and opening up in fissures several feet deep. A strong smell of sulfur filled the air. The 
shaking lasted for four minutes with the usual devastating effects to property. Among the 
witnesses was the artist John James Audubon, who happened to be in the area. The quake 
radiated outward with such force that it knocked down chimneys in Cincinnati four hundred 
miles away and, according to at least one account, “wrecked boats in East Coast harbors and . 
. . even collapsed scaffolding erected around the Capitol Building in Washington, D.C.” On 
January 23 and February 4 further quakes of similar magnitude followed. New Madrid has 
been silent ever since—but not surprisingly, since such episodes have never been known to 
happen in the same place twice. As far as we know, they are as random as lightning. The next 
one could be under Chicago or Paris or Kinshasa. No one can even begin to guess. And what 
causes these massive intraplate rupturings? Something deep within the Earth. More than that 
we don’t know. 

  

    By the 1960s scientists had grown sufficiently frustrated by how little they understood of 
the Earth’s interior that they decided to try to do something about it. Specifically, they got the 
idea to drill through the ocean floor (the continental crust was too thick) to the Moho 
discontinuity and to extract a piece of the Earth’s mantle for examination at leisure. The 
thinking was that if they could understand the nature of the rocks inside the Earth, they might 
begin to understand how they interacted, and thus possibly be able to predict earthquakes and 
other unwelcome events. 

    The project became known, all but inevitably, as the Mohole and it was pretty well 
disastrous. The hope was to lower a drill through 14,000 feet of Pacific Ocean water off the 
coast of Mexico and drill some 17,000 feet through relatively thin crustal rock. Drilling from 
a ship in open waters is, in the words of one oceanographer, “like trying to drill a hole in the 
sidewalks of New York from atop the Empire State Building using a strand of spaghetti.” 
Every attempt ended in failure. The deepest they penetrated was only about 600 feet. The 
Mohole became known as the No Hole. In 1966, exasperated with ever-rising costs and no 
results, Congress killed the project. 

    Four years later, Soviet scientists decided to try their luck on dry land. They chose a spot on 
Russia’s Kola Peninsula, near the Finnish border, and set to work with the hope of drilling to 
a depth of fifteen kilometers. The work proved harder than expected, but the Soviets were 
commendably persistent. When at last they gave up, nineteen years later, they had drilled to a 
depth of 12,262 meters, or about 7.6 miles. Bearing in mind that the crust of the Earth 
represents only about 0.3 percent of the planet’s volume and that the Kola hole had not cut 
even one-third of the way through the crust, we can hardly claim to have conquered the 
interior. 

    Interestingly, even though the hole was modest, nearly everything about it was surprising. 
Seismic wave studies had led the scientists to predict, and pretty confidently, that they would 
encounter sedimentary rock to a depth of 4,700 meters, followed by granite for the next 2,300 
meters and basalt from there on down. In the event, the sedimentary layer was 50 percent 
deeper than expected and the basaltic layer was never found at all. Moreover, the world down 
there was far warmer than anyone had expected, with a temperature at 10,000 meters of 180 



degrees centigrade, nearly twice the forecasted level. Most surprising of all was that the rock 
at that depth was saturated with water—something that had not been thought possible. 

    Because we can’t see into the Earth, we have to use other techniques, which mostly involve 
reading waves as they travel through the interior. We also know a little bit about the mantle 
from what are known as kimberlite pipes, where diamonds are formed. What happens is that 
deep in the Earth there is an explosion that fires, in effect, a cannonball of magma to the 
surface at supersonic speeds. It is a totally random event. A kimberlite pipe could explode in 
your backyard as you read this. Because they come up from such depths—up to 120 miles 
down—kimberlite pipes bring up all kinds of things not normally found on or near the 
surface: a rock called peridotite, crystals of olivine, and—just occasionally, in about one pipe 
in a hundred—diamonds. Lots of carbon comes up with kimberlite ejecta, but most is 
vaporized or turns to graphite. Only occasionally does a hunk of it shoot up at just the right 
speed and cool down with the necessary swiftness to become a diamond. It was such a pipe 
that made Johannesburg the most productive diamond mining city in the world, but there may 
be others even bigger that we don’t know about. Geologists know that somewhere in the 
vicinity of northeastern Indiana there is evidence of a pipe or group of pipes that may be truly 
colossal. Diamonds up to twenty carats or more have been found at scattered sites throughout 
the region. But no one has ever found the source. As John McPhee notes, it may be buried 
under glacially deposited soil, like the Manson crater in Iowa, or under the Great Lakes. 

  

    So how much do we know about what’s inside the Earth? Very little. Scientists are 
generally agreed that the world beneath us is composed of four layers—rocky outer crust, a 
mantle of hot, viscous rock, a liquid outer core, and a solid inner core.1 We know that the 
surface is dominated by silicates, which are relatively light and not heavy enough to account 
for the planet’s overall density. Therefore there must be heavier stuff inside. We know that to 
generate our magnetic field somewhere in the interior there must be a concentrated belt of 
metallic elements in a liquid state. That much is universally agreed upon. Almost everything 
beyond that—how the layers interact, what causes them to behave in the way they do, what 
they will do at any time in the future—is a matter of at least some uncertainty, and generally 
quite a lot of uncertainty. 

    Even the one part of it we can see, the crust, is a matter of some fairly strident debate. 
Nearly all geology texts tell you that continental crust is three to six miles thick under the 
oceans, about twenty-five miles thick under the continents, and forty to sixty miles thick 
under big mountain chains, but there are many puzzling variabilities within these 
generalizations. The crust beneath the Sierra Nevada Mountains, for instance, is only about 
nineteen to twenty-five miles thick, and no one knows why. By all the laws of geophysics the 
Sierra Nevadas should be sinking, as if into quicksand. (Some people think they may be.) 

  

                                                 
1 For those who crave a more detailed picture of the Earth's interior, here are the dimensions of the various 
layers, using average figures: From 0 to 40 km (25 mi) is the crust. From 40 to 400 km (25 to 250 mi) is the 
upper mantle. From 400 to 650 km (250 to 400 mi) is a transition zone between the upper and lower mantle. 
From 650 to 2,700 km (400 to 1,700 mi) is the lower mantle. From 2,700 to 2,890 km (1,700 to 1,900 mi) is the 
"D" layer. From 2,890 to 5,150 km (1,900 to 3,200 mi) is the outer core, and from 5,150 to 6,378 km (3,200 to 
3,967 mi) is the inner core. 



    How and when the Earth got its crust are questions that divide geologists into two broad 
camps—those who think it happened abruptly early in the Earth’s history and those who think 
it happened gradually and rather later. Strength of feeling runs deep on such matters. Richard 
Armstrong of Yale proposed an early-burst theory in the 1960s, then spent the rest of his 
career fighting those who did not agree with him. He died of cancer in 1991, but shortly 
before his death he “lashed out at his critics in a polemic in an Australian earth science journal 
that charged them with perpetuating myths,” according to a report inEarth magazine in 1998. 
“He died a bitter man,” reported a colleague. 

    The crust and part of the outer mantle together are called the lithosphere (from the Greek 
lithos, meaning “stone”), which in turn floats on top of a layer of softer rock called the 
asthenosphere (from Greek words meaning “without strength”), but such terms are never 
entirely satisfactory. To say that the lithosphere floats on top of the asthenosphere suggests a 
degree of easy buoyancy that isn’t quite right. Similarly it is misleading to think of the rocks 
as flowing in anything like the way we think of materials flowing on the surface. The rocks 
are viscous, but only in the same way that glass is. It may not look it, but all the glass on Earth 
is flowing downward under the relentless drag of gravity. Remove a pane of really old glass 
from the window of a European cathedral and it will be noticeably thicker at the bottom than 
at the top. That is the sort of “flow” we are talking about. The hour hand on a clock moves 
about ten thousand times faster than the “flowing” rocks of the mantle. 

    The movements occur not just laterally as the Earth’s plates move across the surface, but up 
and down as well, as rocks rise and fall under the churning process known as convection. 
Convection as a process was first deduced by the eccentric Count von Rumford at the end of 
the eighteenth century. Sixty years later an English vicar named Osmond Fisher presciently 
suggested that the Earth’s interior might well be fluid enough for the contents to move about, 
but that idea took a very long time to gain support. 

    In about 1970, when geophysicists realized just how much turmoil was going on down 
there, it came as a considerable shock. As Shawna Vogel put it in the book Naked Earth: The 
New Geophysics: “It was as if scientists had spent decades figuring out the layers of the 
Earth’s atmosphere—troposphere, stratosphere, and so forth—and then had suddenly found 
out about wind.” 

    How deep the convection process goes has been a matter of controversy ever since. Some 
say it begins four hundred miles down, others two thousand miles below us. The problem, as 
Donald Trefil has observed, is that “there are two sets of data, from two different disciplines, 
that cannot be reconciled.” Geochemists say that certain elements on Earth’s surface cannot 
have come from the upper mantle, but must have come from deeper within the Earth. 
Therefore the materials in the upper and lower mantle must at least occasionally mix. 
Seismologists insist that there is no evidence to support such a thesis. 

    So all that can be said is that at some slightly indeterminate point as we head toward the 
center of Earth we leave the asthenosphere and plunge into pure mantle. Considering that it 
accounts for 82 percent of the Earth’s volume and 65 percent of its mass, the mantle doesn’t 
attract a great deal of attention, largely because the things that interest Earth scientists and 
general readers alike happen either deeper down (as with magnetism) or nearer the surface (as 
with earthquakes). We know that to a depth of about a hundred miles the mantle consists 
predominantly of a type of rock known as peridotite, but what fills the space beyond is 
uncertain. According to a Nature report, it seems not to be peridotite. More than this we do 
not know. 



    Beneath the mantle are the two cores—a solid inner core and a liquid outer one. Needless to 
say, our understanding of the nature of these cores is indirect, but scientists can make some 
reasonable assumptions. They know that the pressures at the center of the Earth are 
sufficiently high—something over three million times those found at the surface—to turn any 
rock there solid. They also know from Earth’s history (among other clues) that the inner core 
is very good at retaining its heat. Although it is little more than a guess, it is thought that in 
over four billion years the temperature at the core has fallen by no more than 200°F. No one 
knows exactly how hot the Earth’s core is, but estimates range from something over 7,000°F 
to 13,000°F—about as hot as the surface of the Sun. 

    The outer core is in many ways even less well understood, though everyone is in agreement 
that it is fluid and that it is the seat of magnetism. The theory was put forward by E. C. 
Bullard of Cambridge University in 1949 that this fluid part of the Earth’s core revolves in a 
way that makes it, in effect, an electrical motor, creating the Earth’s magnetic field. The 
assumption is that the convecting fluids in the Earth act somehow like the currents in wires. 
Exactly what happens isn’t known, but it is felt pretty certain that it is connected with the core 
spinning and with its being liquid. Bodies that don’t have a liquid core—the Moon and Mars, 
for instance—don’t have magnetism. 

    We know that Earth’s magnetic field changes in power from time to time: during the age of 
the dinosaurs, it was up to three times as strong as now. We also know that it reverses itself 
every 500,000 years or so on average, though that average hides a huge degree of 
unpredictability. The last reversal was about 750,000 years ago. Sometimes it stays put for 
millions of years—37 million years appears to be the longest stretch—and at other times it has 
reversed after as little as 20,000 years. Altogether in the last 100 million years it has reversed 
itself about two hundred times, and we don’t have any real idea why. It has been called “the 
greatest unanswered question in the geological sciences.” 

    We may be going through a reversal now. The Earth’s magnetic field has diminished by 
perhaps as much as 6 percent in the last century alone. Any diminution in magnetism is likely 
to be bad news, because magnetism, apart from holding notes to refrigerators and keeping our 
compasses pointing the right way, plays a vital role in keeping us alive. Space is full of 
dangerous cosmic rays that in the absence of magnetic protection would tear through our 
bodies, leaving much of our DNA in useless tatters. When the magnetic field is working, 
these rays are safely herded away from the Earth’s surface and into two zones in near space 
called the Van Allen belts. They also interact with particles in the upper atmosphere to create 
the bewitching veils of light known as the auroras. 

    A big part of the reason for our ignorance, interestingly enough, is that traditionally there 
has been little effort to coordinate what’s happening on top of the Earth with what’s going on 
inside. According to Shawna Vogel: “Geologists and geophysicists rarely go to the same 
meetings or collaborate on the same problems.” 

    Perhaps nothing better demonstrates our inadequate grasp of the dynamics of the Earth’s 
interior than how badly we are caught out when it acts up, and it would be hard to come up 
with a more salutary reminder of the limitations of our understanding than the eruption of 
Mount St. Helens in Washington in 1980. 

    At that time, the lower forty-eight United States had not seen a volcanic eruption for over 
sixty-five years. Therefore the government volcanologists called in to monitor and forecast St. 



Helens’s behavior primarily had seen only Hawaiian volcanoes in action, and they, it turned 
out, were not the same thing at all. 

    St. Helens started its ominous rumblings on March 20. Within a week it was erupting 
magma, albeit in modest amounts, up to a hundred times a day, and being constantly shaken 
with earthquakes. People were evacuated to what was assumed to be a safe distance of eight 
miles. As the mountain’s rumblings grew St. Helens became a tourist attraction for the world. 
Newspapers gave daily reports on the best places to get a view. Television crews repeatedly 
flew in helicopters to the summit, and people were even seen climbing over the mountain. On 
one day, more than seventy copters and light aircraft circled the summit. But as the days 
passed and the rumblings failed to develop into anything dramatic, people grew restless, and 
the view became general that the volcano wasn’t going to blow after all. 

    On April 19 the northern flank of the mountain began to bulge conspicuously. Remarkably, 
no one in a position of responsibility saw that this strongly signaled a lateral blast. The 
seismologists resolutely based their conclusions on the behavior of Hawaiian volcanoes, 
which don’t blow out sideways. Almost the only person who believed that something really 
bad might happen was Jack Hyde, a geology professor at a community college in Tacoma. He 
pointed out that St. Helens didn’t have an open vent, as Hawaiian volcanoes have, so any 
pressure building up inside was bound to be released dramatically and probably 
catastrophically. However, Hyde was not part of the official team and his observations 
attracted little notice. 

    We all know what happened next. At 8:32 A.M. on a Sunday morning, May 18, the north 
side of the volcano collapsed, sending an enormous avalanche of dirt and rock rushing down 
the mountain slope at 150 miles an hour. It was the biggest landslide in human history and 
carried enough material to bury the whole of Manhattan to a depth of four hundred feet. A 
minute later, its flank severely weakened, St. Helens exploded with the force of five hundred 
Hiroshima-sized atomic bombs, shooting out a murderous hot cloud at up to 650 miles an 
hour—much too fast, clearly, for anyone nearby to outrace. Many people who were thought to 
be in safe areas, often far out of sight of the volcano, were overtaken. Fifty-seven people were 
killed. Twenty-three of the bodies were never found. The toll would have been much higher 
except that it was a Sunday. Had it been a weekday many lumber workers would have been 
working within the death zone. As it was, people were killed eighteen miles away. 

    The luckiest person on that day was a graduate student named Harry Glicken. He had been 
manning an observation post 5.7 miles from the mountain, but he had a college placement 
interview on May 18 in California, and so had left the site the day before the eruption. His 
place was taken by David Johnston. Johnston was the first to report the volcano exploding; 
moments later he was dead. His body was never found. Glicken’s luck, alas, was temporary. 
Eleven years later he was one of forty-three scientists and journalists fatally caught up in a 
lethal outpouring of superheated ash, gases, and molten rock—what is known as a pyroclastic 
flow—at Mount Unzen in Japan when yet another volcano was catastrophically misread. 

    Volcanologists may or may not be the worst scientists in the world at making predictions, 
but they are without question the worst in the world at realizing how bad their predictions are. 
Less than two years after the Unzen catastrophe another group of volcano watchers, led by 
Stanley Williams of the University of Arizona, descended into the rim of an active volcano 
called Galeras in Colombia. Despite the deaths of recent years, only two of the sixteen 
members of Williams’s party wore safety helmets or other protective gear. The volcano 



erupted, killing six of the scientists, along with three tourists who had followed them, and 
seriously injuring several others, including Williams himself. 

    In an extraordinarily unself-critical book called Surviving Galeras, Williams said he could 
“only shake my head in wonder” when he learned afterward that his colleagues in the world 
of volcanology had suggested that he had overlooked or disregarded important seismic signals 
and behaved recklessly. “How easy it is to snipe after the fact, to apply the knowledge we 
have now to the events of 1993,” he wrote. He was guilty of nothing worse, he believed, than 
unlucky timing when Galeras “behaved capriciously, as natural forces are wont to do. I was 
fooled, and for that I will take responsibility. But I do not feel guilty about the deaths of my 
colleagues. There is no guilt. There was only an eruption.” 

    But to return to Washington. Mount St. Helens lost thirteen hundred feet of peak, and 230 
square miles of forest were devastated. Enough trees to build 150,000 homes (or 300,000 in 
some reports) were blown away. The damage was placed at $2.7 billion. A giant column of 
smoke and ash rose to a height of sixty thousand feet in less than ten minutes. An airliner 
some thirty miles away reported being pelted with rocks. 

    Ninety minutes after the blast, ash began to rain down on Yakima, Washington, a 
community of fifty thousand people about eighty miles away. As you would expect, the ash 
turned day to night and got into everything, clogging motors, generators, and electrical 
switching equipment, choking pedestrians, blocking filtration systems, and generally bringing 
things to a halt. The airport shut down and highways in and out of the city were closed. 

    All this was happening, you will note, just downwind of a volcano that had been rumbling 
menacingly for two months. Yet Yakima had no volcano emergency procedures. The city’s 
emergency broadcast system, which was supposed to swing into action during a crisis, did not 
go on the air because “the Sunday-morning staff did not know how to operate the equipment.” 
For three days, Yakima was paralyzed and cut off from the world, its airport closed, its 
approach roads impassable. Altogether the city received just five-eighths of an inch of ash 
after the eruption of Mount St. Helens. Now bear that in mind, please, as we consider what a 
Yellowstone blast would do. 



15    DANGEROUS BEAUTY 

 

 

 

IN THE 1960s, while studying the volcanic history of Yellowstone National Park, Bob 
Christiansen of the United States Geological Survey became puzzled about something that, 
oddly, had not troubled anyone before: he couldn’t find the park’s volcano. It had been known 
for a long time that Yellowstone was volcanic in nature—that’s what accounted for all its 
geysers and other steamy features—and the one thing about volcanoes is that they are 
generally pretty conspicuous. But Christiansen couldn’t find the Yellowstone volcano 
anywhere. In particular what he couldn’t find was a structure known as a caldera. 

    Most of us, when we think of volcanoes, think of the classic cone shapes of a Fuji or 
Kilimanjaro, which are created when erupting magma accumulates in a symmetrical mound. 
These can form remarkably quickly. In 1943, at Parícutin in Mexico, a farmer was startled to 
see smoke rising from a patch on his land. In one week he was the bemused owner of a cone 
five hundred feet high. Within two years it had topped out at almost fourteen hundred feet and 
was more than half a mile across. Altogether there are some ten thousand of these intrusively 
visible volcanoes on Earth, all but a few hundred of them extinct. But there is a second, less 
celebrated type of volcano that doesn’t involve mountain building. These are volcanoes so 
explosive that they burst open in a single mighty rupture, leaving behind a vast subsided pit, 
the caldera (from a Latin word for cauldron). Yellowstone obviously was of this second type, 
but Christiansen couldn’t find the caldera anywhere. 

    By coincidence just at this time NASA decided to test some new high-altitude cameras by 
taking photographs of Yellowstone, copies of which some thoughtful official passed on to the 
park authorities on the assumption that they might make a nice blow-up for one of the 
visitors’ centers. As soon as Christiansen saw the photos he realized why he had failed to spot 
the caldera: virtually the whole park—2.2 million acres—was caldera. The explosion had left 
a crater more than forty miles across—much too huge to be perceived from anywhere at 
ground level. At some time in the past Yellowstone must have blown up with a violence far 
beyond the scale of anything known to humans. 

    Yellowstone, it turns out, is a supervolcano. It sits on top of an enormous hot spot, a 
reservoir of molten rock that rises from at least 125 miles down in the Earth. The heat from 
the hot spot is what powers all of Yellowstone’s vents, geysers, hot springs, and popping mud 
pots. Beneath the surface is a magma chamber that is about forty-five miles across—roughly 
the same dimensions as the park—and about eight miles thick at its thickest point. Imagine a 
pile of TNT about the size of Rhode Island and reaching eight miles into the sky, to about the 
height of the highest cirrus clouds, and you have some idea of what visitors to Yellowstone 
are shuffling around on top of. The pressure that such a pool of magma exerts on the crust 
above has lifted Yellowstone and about three hundred miles of surrounding territory about 
1,700 feet higher than they would otherwise be. If it blew, the cataclysm is pretty well beyond 
imagining. According to Professor Bill McGuire of University College London, “you 
wouldn’t be able to get within a thousand kilometers of it” while it was erupting. The 
consequences that followed would be even worse. 



Superplumes of the type on which Yellowstone sits are rather like martini glasses—thin on 
the way up, but spreading out as they near the surface to create vast bowls of unstable magma. 
Some of these bowls can be up to 1,200 miles across. According to theories, they don’t 
always erupt explosively but sometimes burst forth in a vast, continuous outpouring—a 
flood—of molten rock, such as with the Deccan Traps in India sixty-five million years ago. 
(Trap in this context comes from a Swedish word for a type of lava; Deccan is simply an 
area.) These covered an area of 200,000 square miles and probably contributed to the demise 
of the dinosaurs—they certainly didn’t help—with their noxious outgassings. Superplumes 
may also be responsible for the rifts that cause continents to break up. 

    Such plumes are not all that rare. There are about thirty active ones on the Earth at the 
moment, and they are responsible for many of the world’s best-known islands and island 
chains—Iceland, Hawaii, the Azores, Canaries, and Galápagos archipelagos, little Pitcairn in 
the middle of the South Pacific, and many others—but apart from Yellowstone they are all 
oceanic. No one has the faintest idea how or why Yellowstone’s ended up beneath a 
continental plate. Only two things are certain: that the crust at Yellowstone is thin and that the 
world beneath it is hot. But whether the crust is thin because of the hot spot or whether the hot 
spot is there because the crust is thin is a matter of heated (as it were) debate. The continental 
nature of the crust makes a huge difference to its eruptions. Where the other supervolcanoes 
tend to bubble away steadily and in a comparatively benign fashion, Yellowstone blows 
explosively. It doesn’t happen often, but when it does you want to stand well back. 

    Since its first known eruption 16.5 million years ago, it has blown up about a hundred 
times, but the most recent three eruptions are the ones that get written about. The last eruption 
was a thousand times greater than that of Mount St. Helens; the one before that was 280 times 
bigger, and the one before was so big that nobody knows exactly how big it was. It was at 
least twenty-five hundred times greater than St. Helens, but perhaps eight thousand times 
more monstrous. 

    We have absolutely nothing to compare it to. The biggest blast in recent times was that of 
Krakatau in Indonesia in August 1883, which made a bang that reverberated around the world 
for nine days, and made water slosh as far away as the English Channel. But if you imagine 
the volume of ejected material from Krakatau as being about the size of a golf ball, then the 
biggest of the Yellowstone blasts would be the size of a sphere you could just about hide 
behind. On this scale, Mount St. Helens’s would be no more than a pea. 

    The Yellowstone eruption of two million years ago put out enough ash to bury New York 
State to a depth of sixty-seven feet or California to a depth of twenty. This was the ash that 
made Mike Voorhies’s fossil beds in eastern Nebraska. That blast occurred in what is now 
Idaho, but over millions of years, at a rate of about one inch a year, the Earth’s crust has 
traveled over it, so that today it is directly under northwest Wyoming. (The hot spot itself 
stays in one place, like an acetylene torch aimed at a ceiling.) In its wake it leaves the sort of 
rich volcanic plains that are ideal for growing potatoes, as Idaho’s farmers long ago 
discovered. In another two million years, geologists like to joke, Yellowstone will be 
producing French fries for McDonald’s, and the people of Billings, Montana, will be stepping 
around geysers. 

    The ash fall from the last Yellowstone eruption covered all or parts of nineteen western 
states (plus parts of Canada and Mexico)—nearly the whole of the United States west of the 
Mississippi. This, bear in mind, is the breadbasket of America, an area that produces roughly 
half the world’s cereals. And ash, it is worth remembering, is not like a big snowfall that will 



melt in the spring. If you wanted to grow crops again, you would have to find some place to 
put all the ash. It took thousands of workers eight months to clear 1.8 billion tons of debris 
from the sixteen acres of the World Trade Center site in New York. Imagine what it would 
take to clear Kansas. 

    And that’s not even to consider the climatic consequences. The last supervolcano eruption 
on Earth was at Toba, in northern Sumatra, seventy-four thousand years ago. No one knows 
quite how big it was other than that it was a whopper. Greenland ice cores show that the Toba 
blast was followed by at least six years of “volcanic winter” and goodness knows how many 
poor growing seasons after that. The event, it is thought, may have carried humans right to the 
brink of extinction, reducing the global population to no more than a few thousand 
individuals. That means that all modern humans arose from a very small population base, 
which would explain our lack of genetic diversity. At all events, there is some evidence to 
suggest that for the next twenty thousand years the total number of people on Earth was never 
more than a few thousand at any time. That is, needless to say, a long time to recover from a 
single volcanic blast. 

    All this was hypothetically interesting until 1973, when an odd occurrence made it 
suddenly momentous: water in Yellowstone Lake, in the heart of the park, began to run over 
the banks at the lake’s southern end, flooding a meadow, while at the opposite end of the lake 
the water mysteriously flowed away. Geologists did a hasty survey and discovered that a large 
area of the park had developed an ominous bulge. This was lifting up one end of the lake and 
causing the water to run out at the other, as would happen if you lifted one side of a child’s 
wading pool. By 1984, the whole central region of the park—several dozen square miles—
was more than three feet higher than it had been in 1924, when the park was last formally 
surveyed. Then in 1985, the whole of the central part of the park subsided by eight inches. It 
now seems to be swelling again. 

    The geologists realized that only one thing could cause this—a restless magma chamber. 
Yellowstone wasn’t the site of an ancient supervolcano; it was the site of an active one. It was 
also at about this time that they were able to work out that the cycle of Yellowstone’s 
eruptions averaged one massive blow every 600,000 years. The last one, interestingly enough, 
was 630,000 years ago. Yellowstone, it appears, is due. 

  

    “It may not feel like it, but you’re standing on the largest active volcano in the world,” Paul 
Doss, Yellowstone National Park geologist, told me soon after climbing off an enormous 
Harley-Davidson motorcycle and shaking hands when we met at the park headquarters at 
Mammoth Hot Springs early on a lovely morning in June. A native of Indiana, Doss is an 
amiable, soft-spoken, extremely thoughtful man who looks nothing like a National Park 
Service employee. He has a graying beard and hair tied back in a long ponytail. A small 
sapphire stud graces one ear. A slight paunch strains against his crisp Park Service uniform. 
He looks more like a blues musician than a government employee. In fact, he is a blues 
musician (harmonica). But he sure knows and loves geology. “And I’ve got the best place in 
the world to do it,” he says as we set off in a bouncy, battered four-wheel-drive vehicle in the 
general direction of Old Faithful. He has agreed to let me accompany him for a day as he goes 
about doing whatever it is a park geologist does. The first assignment today is to give an 
introductory talk to a new crop of tour guides. 



    Yellowstone, I hardly need point out, is sensationally beautiful, with plump, stately 
mountains, bison-specked meadows, tumbling streams, a sky-blue lake, wildlife beyond 
counting. “It really doesn’t get any better than this if you’re a geologist,” Doss says. “You’ve 
got rocks up at Beartooth Gap that are nearly three billion years old—three-quarters of the 
way back to Earth’s beginning—and then you’ve got mineral springs here”—he points at the 
sulfurous hot springs from which Mammoth takes its title—“where you can see rocks as they 
are being born. And in between there’s everything you could possibly imagine. I’ve never 
been any place where geology is more evident—or prettier.” 

    “So you like it?” I say. 

    “Oh, no, I love it,” he answers with profound sincerity. “I mean I really love it here. The 
winters are tough and the pay’s not too hot, but when it’s good, it’s just—” 

    He interrupted himself to point out a distant gap in a range of mountains to the west, which 
had just come into view over a rise. The mountains, he told me, were known as the Gallatins. 
“That gap is sixty or maybe seventy miles across. For a long time nobody could understand 
why that gap was there, and then Bob Christiansen realized that it had to be because the 
mountains were just blown away. When you’ve got sixty miles of mountains just obliterated, 
you know you’re dealing with something pretty potent. It took Christiansen six years to figure 
it all out.” 

    I asked him what caused Yellowstone to blow when it did. 

    “Don’t know. Nobody knows. Volcanoes are strange things. We really don’t understand 
them at all. Vesuvius, in Italy, was active for three hundred years until an eruption in 1944 
and then it just stopped. It’s been silent ever since. Some volcanologists think that it is 
recharging in a big way, which is a little worrying because two million people live on or 
around it. But nobody knows.” 

    “And how much warning would you get if Yellowstone was going to go?” 

    He shrugged. “Nobody was around the last time it blew, so nobody knows what the 
warning signs are. Probably you would have swarms of earthquakes and some surface uplift 
and possibly some changes in the patterns of behavior of the geysers and steam vents, but 
nobody really knows.” 

    “So it could just blow without warning?” 

    He nodded thoughtfully. The trouble, he explained, is that nearly all the things that would 
constitute warning signs already exist in some measure at Yellowstone. “Earthquakes are 
generally a precursor of volcanic eruptions, but the park already has lots of earthquakes—
1,260 of them last year. Most of them are too small to be felt, but they are earthquakes 
nonetheless.” 

    A change in the pattern of geyser eruptions might also be taken as a clue, he said, but these 
too vary unpredictably. Once the most famous geyser in the park was Excelsior Geyser. It 
used to erupt regularly and spectacularly to heights of three hundred feet, but in 1888 it just 
stopped. Then in 1985 it erupted again, though only to a height of eighty feet. Steamboat 
Geyser is the biggest geyser in the world when it blows, shooting water four hundred feet into 
the air, but the intervals between its eruptions have ranged from as little as four days to almost 



fifty years. “If it blew today and again next week, that wouldn’t tell us anything at all about 
what it might do the following week or the week after or twenty years from now,” Doss says. 
“The whole park is so volatile that it’s essentially impossible to draw conclusions from almost 
anything that happens.” 

    Evacuating Yellowstone would never be easy. The park gets some three million visitors a 
year, mostly in the three peak months of summer. The park’s roads are comparatively few and 
they are kept intentionally narrow, partly to slow traffic, partly to preserve an air of 
picturesqueness, and partly because of topographical constraints. At the height of summer, it 
can easily take half a day to cross the park and hours to get anywhere within it. “Whenever 
people see animals, they just stop, wherever they are,” Doss says. “We get bear jams. We get 
bison jams. We get wolf jams.” 

  

    In the autumn of 2000, representatives from the U.S. Geological Survey and National Park 
Service, along with some academics, met and formed something called the Yellowstone 
Volcanic Observatory. Four such bodies were in existence already—in Hawaii, California, 
Alaska, and Washington—but oddly none in the largest volcanic zone in the world. The YVO 
is not actually a thing, but more an idea—an agreement to coordinate efforts at studying and 
analyzing the park’s diverse geology. One of their first tasks, Doss told me, was to draw up an 
“earthquake and volcano hazards plan”—a plan of action in the event of a crisis. 

    “There isn’t one already?” I said. 

    “No. Afraid not. But there will be soon.” 

    “Isn’t that just a little tardy?” 

    He smiled. “Well, let’s just say that it’s not any too soon.” 

    Once it is in place, the idea is that three people—Christiansen in Menlo Park, California, 
Professor Robert B. Smith at the University of Utah, and Doss in the park—would assess the 
degree of danger of any potential cataclysm and advise the park superintendent. The 
superintendent would take the decision whether to evacuate the park. As for surrounding 
areas, there are no plans. If Yellowstone were going to blow in a really big way, you would be 
on your own once you left the park gates. 

    Of course it may be tens of thousands of years before that day comes. Doss thinks such a 
day may not come at all. “Just because there was a pattern in the past doesn’t mean that it still 
holds true,” he says. “There is some evidence to suggest that the pattern may be a series of 
catastrophic explosions, then a long period of quiet. We may be in that now. The evidence 
now is that most of the magma chamber is cooling and crystallizing. It is releasing its 
volatiles; you need to trap volatiles for an explosive eruption.” 

    In the meantime there are plenty of other dangers in and around Yellowstone, as was made 
devastatingly evident on the night of August 17, 1959, at a place called Hebgen Lake just 
outside the park. At twenty minutes to midnight on that date, Hebgen Lake suffered a 
catastrophic quake. It was magnitude 7.5, not vast as earthquakes go, but so abrupt and 
wrenching that it collapsed an entire mountainside. It was the height of the summer season, 
though fortunately not so many people went to Yellowstone in those days as now. Eighty 



million tons of rock, moving at more than one hundred miles an hour, just fell off the 
mountain, traveling with such force and momentum that the leading edge of the landslide ran 
four hundred feet up a mountain on the other side of the valley. Along its path lay part of the 
Rock Creek Campground. Twenty-eight campers were killed, nineteen of them buried too 
deep ever to be found again. The devastation was swift but heartbreakingly fickle. Three 
brothers, sleeping in one tent, were spared. Their parents, sleeping in another tent beside 
them, were swept away and never seen again. 

    “A big earthquake—and I mean big—will happen sometime,” Doss told me. “You can 
count on that. This is a big fault zone for earthquakes.” 

    Despite the Hebgen Lake quake and the other known risks, Yellowstone didn’t get 
permanent seismometers until the 1970s. 

  

    If you needed a way to appreciate the grandeur and inexorable nature of geologic processes, 
you could do worse than to consider the Tetons, the sumptuously jagged range that stands just 
to the south of Yellowstone National Park. Nine million years ago, the Tetons didn’t exist. 
The land around Jackson Hole was just a high grassy plain. But then a forty-mile-long fault 
opened within the Earth, and since then, about once every nine hundred years, the Tetons 
experience a really big earthquake, enough to jerk them another six feet higher. It is these 
repeated jerks over eons that have raised them to their present majestic heights of seven 
thousand feet. 

    That nine hundred years is an average—and a somewhat misleading one. According to 
Robert B. Smith and Lee J. Siegel in Windows into the Earth , a geological history of the 
region, the last major Teton quake was somewhere between about five and seven thousand 
years ago. The Tetons, in short, are about the most overdue earthquake zone on the planet. 

    Hydrothermal explosions are also a significant risk. They can happen anytime, pretty much 
anywhere, and without any predictability. “You know, by design we funnel visitors into 
thermal basins,” Doss told me after we had watched Old Faithful blow. “It’s what they come 
to see. Did you know there are more geysers and hot springs at Yellowstone than in all the 
rest of the world combined?” 

    “I didn’t know that.” 

    He nodded. “Ten thousand of them, and nobody knows when a new vent might open.” We 
drove to a place called Duck Lake, a body of water a couple of hundred yards across. “It looks 
completely innocuous,” he said. “It’s just a big pond. But this big hole didn’t used to be here. 
At some time in the last fifteen thousand years this blew in a really big way. You’d have had 
several tens of millions of tons of earth and rock and superheated water blowing out at 
hypersonic speeds. You can imagine what it would be like if this happened under, say, the 
parking lot at Old Faithful or one of the visitors’ centers.” He made an unhappy face. 

    “Would there be any warning?” 

    “Probably not. The last significant explosion in the park was at a place called Pork Chop 
Geyser in 1989. That left a crater about five meters across—not huge by any means, but big 
enough if you happened to be standing there at the time. Fortunately, nobody was around so 



nobody was hurt, but that happened without warning. In the very ancient past there have been 
explosions that have made holes a mile across. And nobody can tell you where or when that 
might happen again. You just have to hope that you’re not standing there when it does.” 

    Big rockfalls are also a danger. There was a big one at Gardiner Canyon in 1999, but again 
fortunately no one was hurt. Late in the afternoon, Doss and I stopped at a place where there 
was a rock overhang poised above a busy park road. Cracks were clearly visible. “It could go 
at any time,” Doss said thoughtfully. 

    “You’re kidding,” I said. There wasn’t a moment when there weren’t two cars passing 
beneath it, all filled with, in the most literal sense, happy campers. 

    “Oh, it’s not likely,” he added. “I’m just saying it could. Equally it could stay like that for 
decades. There’s just no telling. People have to accept that there is risk in coming here. That’s 
all there is to it.” 

    As we walked back to his vehicle to head back to Mammoth Hot Springs, Doss added: “But 
the thing is, most of the time bad things don’t happen. Rocks don’t fall. Earthquakes don’t 
occur. New vents don’t suddenly open up. For all the instability, it’s mostly remarkably and 
amazingly tranquil.” 

    “Like Earth itself,” I remarked. 

    “Precisely,” he agreed. 

  

    The risks at Yellowstone apply to park employees as much as to visitors. Doss got a 
horrific sense of that in his first week on the job five years earlier. Late one night, three young 
summer employees engaged in an illicit activity known as “hot-potting”—swimming or 
basking in warm pools. Though the park, for obvious reasons, doesn’t publicize it, not all the 
pools in Yellowstone are dangerously hot. Some are extremely agreeable to lie in, and it was 
the habit of some of the summer employees to have a dip late at night even though it was 
against the rules to do so. Foolishly the threesome had failed to take a flashlight, which was 
extremely dangerous because much of the soil around the warm pools is crusty and thin and 
one can easily fall through into a scalding vent below. In any case, as they made their way 
back to their dorm, they came across a stream that they had had to leap over earlier. They 
backed up a few paces, linked arms and, on the count of three, took a running jump. In fact, it 
wasn’t the stream at all. It was a boiling pool. In the dark they had lost their bearings. None of 
the three survived. 

    I thought about this the next morning as I made a brief call, on my way out of the park, at a 
place called Emerald Pool, in the Upper Geyser Basin. Doss hadn’t had time to take me there 
the day before, but I thought I ought at least to have a look at it, for Emerald Pool is a historic 
site. 

    In 1965, a husband-and-wife team of biologists named Thomas and Louise Brock, while on 
a summer study trip, had done a crazy thing. They had scooped up some of the yellowy-
brown scum that rimmed the pool and examined it for life. To their, and eventually the wider 
world’s, deep surprise, it was full of living microbes. They had found the world’s first 
extremophiles—organisms that could live in water that had previously been assumed to be 



much too hot or acid or choked with sulfur to bear life. Emerald Pool, remarkably, was all 
these things, yet at least two types of living things, Sulpholobus acidocaldarius and 
Thermophilus aquaticus as they became known, found it congenial. It had always been 
supposed that nothing could survive above temperatures of 50°C (122°F), but here were 
organisms basking in rank, acidic waters nearly twice that hot. 

    For almost twenty years, one of the Brocks’ two new bacteria, Thermophilus aquaticus, 
remained a laboratory curiosity until a scientist in California named Kary B. Mullis realized 
that heat-resistant enzymes within it could be used to create a bit of chemical wizardry known 
as a polymerase chain reaction, which allows scientists to generate lots of DNA from very 
small amounts—as little as a single molecule in ideal conditions. It’s a kind of genetic 
photocopying, and it became the basis for all subsequent genetic science, from academic 
studies to police forensic work. It won Mullis the Nobel Prize in chemistry in 1993. 

    Meanwhile, scientists were finding even hardier microbes, now known as 
hyperthermophiles, which demand temperatures of 80°C (176°F) or more. The warmest 
organism found so far, according to Frances Ashcroft in Life at the Extremes, is Pyrolobus 
fumarii, which dwells in the walls of ocean vents where the temperature can reach 113°C 
(235.4°F). The upper limit for life is thought to be about 120°C (248°F), though no one 
actually knows. At all events, the Brocks’ findings completely changed our perception of the 
living world. As NASA scientist Jay Bergstralh has put it: “Wherever we go on Earth—even 
into what’s seemed like the most hostile possible environments for life—as long as there is 
liquid water and some source of chemical energy we find life.” 

    Life, it turns out, is infinitely more clever and adaptable than anyone had ever supposed. 
This is a very good thing, for as we are about to see, we live in a world that doesn’t altogether 
seem to want us here. 

 



 

 

PART V   LIFE ITSELF 

 

 

 

   The more I examine the universe  
   and study the details of its architecture,  
   the more evidence I find that the  
   universe in some sense must have  
   known we were coming. 
 
      -Freeman Dyson 
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IT ISN’T EASY being an organism. In the whole universe, as far as we yet know, there is 
only one place, an inconspicuous outpost of the Milky Way called Earth, that will sustain you, 
and even it can be pretty grudging. 

    From the bottom of the deepest ocean trench to the top of the highest mountain, the zone 
that covers nearly the whole of known life, is only something over a dozen miles—not much 
when set against the roominess of the cosmos at large. 

    For humans it is even worse because we happen to belong to the portion of living things 
that took the rash but venturesome decision 400 million years ago to crawl out of the seas and 
become land based and oxygen breathing. In consequence, no less than 99.5 percent of the 
world’s habitable space by volume, according to one estimate, is fundamentally—in practical 
terms completely—off-limits to us. 

    It isn’t simply that we can’t breathe in water, but that we couldn’t bear the pressures. 
Because water is about 1,300 times heavier than air, pressures rise swiftly as you descend—
by the equivalent of one atmosphere for every ten meters (thirty-three feet) of depth. On land, 
if you rose to the top of a five-hundred-foot eminence—Cologne Cathedral or the Washington 
Monument, say—the change in pressure would be so slight as to be indiscernible. At the same 
depth underwater, however, your veins would collapse and your lungs would compress to the 
approximate dimensions of a Coke can. Amazingly, people do voluntarily dive to such depths, 
without breathing apparatus, for the fun of it in a sport known as free diving. Apparently the 
experience of having your internal organs rudely deformed is thought exhilarating (though not 
presumably as exhilarating as having them return to their former dimensions upon 
resurfacing). To reach such depths, however, divers must be dragged down, and quite briskly, 
by weights. Without assistance, the deepest anyone has gone and lived to talk about it 
afterward was an Italian named Umberto Pelizzari, who in 1992 dove to a depth of 236 feet, 
lingered for a nanosecond, and then shot back to the surface. In terrestrial terms, 236 feet is 
just slightly over the length of one New York City block. So even in our most exuberant 
stunts we can hardly claim to be masters of the abyss. 

    Other organisms do of course manage to deal with the pressures at depth, though quite how 
some of them do so is a mystery. The deepest point in the ocean is the Mariana Trench in the 
Pacific. There, some seven miles down, the pressures rise to over sixteen thousand pounds per 
square inch. We have managed once, briefly, to send humans to that depth in a sturdy diving 
vessel, yet it is home to colonies of amphipods, a type of crustacean similar to shrimp but 
transparent, which survive without any protection at all. Most oceans are of course much 



shallower, but even at the average ocean depth of two and a half miles the pressure is 
equivalent to being squashed beneath a stack of fourteen loaded cement trucks. 

    Nearly everyone, including the authors of some popular books on oceanography, assumes 
that the human body would crumple under the immense pressures of the deep ocean. In fact, 
this appears not to be the case. Because we are made largely of water ourselves, and water is 
“virtually incompressible,” in the words of Frances Ashcroft of Oxford University, “the body 
remains at the same pressure as the surrounding water, and is not crushed at depth.” It is the 
gases inside your body, particularly in the lungs, that cause the trouble. These do compress, 
though at what point the compression becomes fatal is not known. Until quite recently it was 
thought that anyone diving to one hundred meters or so would die painfully as his or her lungs 
imploded or chest wall collapsed, but the free divers have repeatedly proved otherwise. It 
appears, according to Ashcroft, that “humans may be more like whales and dolphins than had 
been expected.” 

    Plenty else can go wrong, however. In the days of diving suits—the sort that were 
connected to the surface by long hoses—divers sometimes experienced a dreaded 
phenomenon known as “the squeeze.” This occurred when the surface pumps failed, leading 
to a catastrophic loss of pressure in the suit. The air would leave the suit with such violence 
that the hapless diver would be, all too literally, sucked up into the helmet and hosepipe. 
When hauled to the surface, “all that is left in the suit are his bones and some rags of flesh,” 
the biologist J. B. S. Haldane wrote in 1947, adding for the benefit of doubters, “This has 
happened.” 

    (Incidentally, the original diving helmet, designed in 1823 by an Englishman named 
Charles Deane, was intended not for diving but for fire-fighting. It was called a “smoke 
helmet,” but being made of metal it was hot and cumbersome and, as Deane soon discovered, 
firefighters had no particular eagerness to enter burning structures in any form of attire, but 
most especially not in something that heated up like a kettle and made them clumsy into the 
bargain. In an attempt to save his investment, Deane tried it underwater and found it was ideal 
for salvage work.) 

    The real terror of the deep, however, is the bends—not so much because they are 
unpleasant, though of course they are, as because they are so much more likely. The air we 
breathe is 80 percent nitrogen. Put the human body under pressure, and that nitrogen is 
transformed into tiny bubbles that migrate into the blood and tissues. If the pressure is 
changed too rapidly—as with a too-quick ascent by a diver—the bubbles trapped within the 
body will begin to fizz in exactly the manner of a freshly opened bottle of champagne, 
clogging tiny blood vessels, depriving cells of oxygen, and causing pain so excruciating that 
sufferers are prone to bend double in agony—hence “the bends.” 

    The bends have been an occupational hazard for sponge and pearl divers since time 
immemorial but didn’t attract much attention in the Western world until the nineteenth 
century, and then it was among people who didn’t get wet at all (or at least not very wet and 
not generally much above the ankles). They were caisson workers. Caissons were enclosed 
dry chambers built on riverbeds to facilitate the construction of bridge piers. They were filled 
with compressed air, and often when the workers emerged after an extended period of 
working under this artificial pressure they experienced mild symptoms like tingling or itchy 
skin. But an unpredictable few felt more insistent pain in the joints and occasionally collapsed 
in agony, sometimes never to get up again. 



    It was all most puzzling. Sometimes workers would go to bed feeling fine, but wake up 
paralyzed. Sometimes they wouldn’t wake up at all. Ashcroft relates a story concerning the 
directors of a new tunnel under the Thames who held a celebratory banquet as the tunnel 
neared completion. To their consternation their champagne failed to fizz when uncorked in 
the compressed air of the tunnel. However, when at length they emerged into the fresh air of a 
London evening, the bubbles sprang instantly to fizziness, memorably enlivening the 
digestive process. 

    Apart from avoiding high-pressure environments altogether, only two strategies are reliably 
successful against the bends. The first is to suffer only a very short exposure to the changes in 
pressure. That is why the free divers I mentioned earlier can descend to depths of five hundred 
feet without ill effect. They don’t stay under long enough for the nitrogen in their system to 
dissolve into their tissues. The other solution is to ascend by careful stages. This allows the 
little bubbles of nitrogen to dissipate harmlessly. 

    A great deal of what we know about surviving at extremes is owed to the extraordinary 
father-and-son team of John Scott and J. B. S. Haldane. Even by the demanding standards of 
British intellectuals, the Haldanes were outstandingly eccentric. The senior Haldane was born 
in 1860 to an aristocratic Scottish family (his brother was Viscount Haldane) but spent most 
of his career in comparative modesty as a professor of physiology at Oxford. He was 
famously absent-minded. Once after his wife had sent him upstairs to change for a dinner 
party he failed to return and was discovered asleep in bed in his pajamas. When roused, 
Haldane explained that he had found himself disrobing and assumed it was bedtime. His idea 
of a vacation was to travel to Cornwall to study hookworm in miners. Aldous Huxley, the 
novelist grandson of T. H. Huxley, who lived with the Haldanes for a time, parodied him, a 
touch mercilessly, as the scientist Edward Tantamount in the novel Point Counter Point . 

    Haldane’s gift to diving was to work out the rest intervals necessary to manage an ascent 
from the depths without getting the bends, but his interests ranged across the whole of 
physiology, from studying altitude sickness in climbers to the problems of heatstroke in desert 
regions. He had a particular interest in the effects of toxic gases on the human body. To 
understand more exactly how carbon monoxide leaks killed miners, he methodically poisoned 
himself, carefully taking and measuring his own blood samples the while. He quit only when 
he was on the verge of losing all muscle control and his blood saturation level had reached 56 
percent—a level, as Trevor Norton notes in his entertaining history of diving, Stars Beneath 
the Sea, only fractionally removed from nearly certain lethality. 

    Haldane’s son Jack, known to posterity as J.B.S., was a remarkable prodigy who took an 
interest in his father’s work almost from infancy. At the age of three he was overheard 
demanding peevishly of his father, “But is it oxyhaemoglobin or carboxyhaemoglobin?” 
Throughout his youth, the young Haldane helped his father with experiments. By the time he 
was a teenager, the two often tested gases and gas masks together, taking turns to see how 
long it took them to pass out. 

    Though J. B. S. Haldane never took a degree in science (he studied classics at Oxford), he 
became a brilliant scientist in his own right, mostly in Cambridge. The biologist Peter 
Medawar, who spent his life around mental Olympians, called him “the cleverest man I ever 
knew.” Huxley likewise parodied the younger Haldane in his novel Antic Hay, but also used 
his ideas on genetic manipulation of humans as the basis for the plot of Brave New World. 
Among many other achievements, Haldane played a central role in marrying Darwinian 



principles of evolution to the genetic work of Gregor Mendel to produce what is known to 
geneticists as the Modern Synthesis. 

Perhaps uniquely among human beings, the younger Haldane found World War I “a very 
enjoyable experience” and freely admitted that he “enjoyed the opportunity of killing people.” 
He was himself wounded twice. After the war he became a successful popularizer of science 
and wrote twenty-three books (as well as over four hundred scientific papers). His books are 
still thoroughly readable and instructive, though not always easy to find. He also became an 
enthusiastic Marxist. It has been suggested, not altogether cynically, that this was out of a 
purely contrarian instinct, and that if he had been born in the Soviet Union he would have 
been a passionate monarchist. At all events, most of his articles first appeared in the 
Communist Daily Worker. 

    Whereas his father’s principal interests concerned miners and poisoning, the younger 
Haldane became obsessed with saving submariners and divers from the unpleasant 
consequences of their work. With Admiralty funding he acquired a decompression chamber 
that he called the “pressure pot.” This was a metal cylinder into which three people at a time 
could be sealed and subjected to tests of various types, all painful and nearly all dangerous. 
Volunteers might be required to sit in ice water while breathing “aberrant atmosphere” or 
subjected to rapid changes of pressurization. In one experiment, Haldane simulated a 
dangerously hasty ascent to see what would happen. What happened was that the dental 
fillings in his teeth exploded. “Almost every experiment,” Norton writes, “ended with 
someone having a seizure, bleeding, or vomiting.” The chamber was virtually soundproof, so 
the only way for occupants to signal unhappiness or distress was to tap insistently on the 
chamber wall or to hold up notes to a small window. 

    On another occasion, while poisoning himself with elevated levels of oxygen, Haldane had 
a fit so severe that he crushed several vertebrae. Collapsed lungs were a routine hazard. 
Perforated eardrums were quite common, but, as Haldane reassuringly noted in one of his 
essays, “the drum generally heals up; and if a hole remains in it, although one is somewhat 
deaf, one can blow tobacco smoke out of the ear in question, which is a social 
accomplishment.” 

    What was extraordinary about this was not that Haldane was willing to subject himself to 
such risk and discomfort in the pursuit of science, but that he had no trouble talking 
colleagues and loved ones into climbing into the chamber, too. Sent on a simulated descent, 
his wife once had a fit that lasted thirteen minutes. When at last she stopped bouncing across 
the floor, she was helped to her feet and sent home to cook dinner. Haldane happily employed 
whoever happened to be around, including on one memorable occasion a former prime 
minister of Spain, Juan Negrín. Dr. Negrín complained afterward of minor tingling and “a 
curious velvety sensation on the lips” but otherwise seems to have escaped unharmed. He may 
have considered himself very lucky. A similar experiment with oxygen deprivation left 
Haldane without feeling in his buttocks and lower spine for six years. 

    Among Haldane’s many specific preoccupations was nitrogen intoxication. For reasons that 
are still poorly understood, beneath depths of about a hundred feet nitrogen becomes a 
powerful intoxicant. Under its influence divers had been known to offer their air hoses to 
passing fish or decide to try to have a smoke break. It also produced wild mood swings. In 
one test, Haldane noted, the subject “alternated between depression and elation, at one 
moment begging to be decompressed because he felt ‘bloody awful’ and the next minute 
laughing and attempting to interfere with his colleague’s dexterity test.” In order to measure 



the rate of deterioration in the subject, a scientist had to go into the chamber with the 
volunteer to conduct simple mathematical tests. But after a few minutes, as Haldane later 
recalled, “the tester was usually as intoxicated as the testee, and often forgot to press the 
spindle of his stopwatch, or to take proper notes.” The cause of the inebriation is even now a 
mystery. It is thought that it may be the same thing that causes alcohol intoxication, but as no 
one knows for certain what causes that we are none the wiser. At all events, without the 
greatest care, it is easy to get in trouble once you leave the surface world. 

  

    Which brings us back (well, nearly) to our earlier observation that Earth is not the easiest 
place to be an organism, even if it is the only place. Of the small portion of the planet’s 
surface that is dry enough to stand on, a surprisingly large amount is too hot or cold or dry or 
steep or lofty to be of much use to us. Partly, it must be conceded, this is our fault. In terms of 
adaptability, humans are pretty amazingly useless. Like most animals, we don’t much like 
really hot places, but because we sweat so freely and easily stroke, we are especially 
vulnerable. In the worst circumstances—on foot without water in a hot desert—most people 
will grow delirious and keel over, possibly never to rise again, in no more than six or seven 
hours. We are no less helpless in the face of cold. Like all mammals, humans are good at 
generating heat but—because we are so nearly hairless—not good at keeping it. Even in quite 
mild weather half the calories you burn go to keep your body warm. Of course, we can 
counter these frailties to a large extent by employing clothing and shelter, but even so the 
portions of Earth on which we are prepared or able to live are modest indeed: just 12 percent 
of the total land area, and only 4 percent of the whole surface if you include the seas. 

    Yet when you consider conditions elsewhere in the known universe, the wonder is not that 
we use so little of our planet but that we have managed to find a planet that we can use even a 
bit of. You have only to look at our own solar system—or, come to that, Earth at certain 
periods in its own history—to appreciate that most places are much harsher and much less 
amenable to life than our mild, blue watery globe. 

    So far space scientists have discovered about seventy planets outside the solar system, out 
of the ten billion trillion or so that are thought to be out there, so humans can hardly claim to 
speak with authority on the matter, but it appears that if you wish to have a planet suitable for 
life, you have to be just awfully lucky, and the more advanced the life, the luckier you have to 
be. Various observers have identified about two dozen particularly helpful breaks we have 
had on Earth, but this is a flying survey so we’ll distill them down to the principal four. They 
are: 

 

Excellent location.We are, to an almost uncanny degree, the right distance from the right sort 
of star, one that is big enough to radiate lots of energy, but not so big as to burn itself out 
swiftly. It is a curiosity of physics that the larger a star the more rapidly it burns. Had our sun 
been ten times as massive, it would have exhausted itself after ten million years instead of ten 
billion and we wouldn’t be here now. We are also fortunate to orbit where we do. Too much 
nearer and everything on Earth would have boiled away. Much farther away and everything 
would have frozen. 

    In 1978, an astrophysicist named Michael Hart made some calculations and concluded that 
Earth would have been uninhabitable had it been just 1 percent farther from or 5 percent 



closer to the Sun. That’s not much, and in fact it wasn’t enough. The figures have since been 
refined and made a little more generous—5 percent nearer and 15 percent farther are thought 
to be more accurate assessments for our zone of habitability—but that is still a narrow belt.1  

    To appreciate just how narrow, you have only to look at Venus. Venus is only twenty-five 
million miles closer to the Sun than we are. The Sun’s warmth reaches it just two minutes 
before it touches us. In size and composition, Venus is very like Earth, but the small 
difference in orbital distance made all the difference to how it turned out. It appears that 
during the early years of the solar system Venus was only slightly warmer than Earth and 
probably had oceans. But those few degrees of extra warmth meant that Venus could not hold 
on to its surface water, with disastrous consequences for its climate. As its water evaporated, 
the hydrogen atoms escaped into space, and the oxygen atoms combined with carbon to form 
a dense atmosphere of the greenhouse gas CO2. Venus became stifling. Although people of 
my age will recall a time when astronomers hoped that Venus might harbor life beneath its 
padded clouds, possibly even a kind of tropical verdure, we now know that it is much too 
fierce an environment for any kind of life that we can reasonably conceive of. Its surface 
temperature is a roasting 470 degrees centigrade (roughly 900 degrees Fahrenheit), which is 
hot enough to melt lead, and the atmospheric pressure at the surface is ninety times that of 
Earth, or more than any human body could withstand. We lack the technology to make suits 
or even spaceships that would allow us to visit. Our knowledge of Venus’s surface is based on 
distant radar imagery and some startled squawks from an unmanned Soviet probe that was 
dropped hopefully into the clouds in 1972 and functioned for barely an hour before 
permanently shutting down. 

    So that’s what happens when you move two light minutes closer to the Sun. Travel farther 
out and the problem becomes not heat but cold, as Mars frigidly attests. It, too, was once a 
much more congenial place, but couldn’t retain a usable atmosphere and turned into a frozen 
waste. 

    But just being the right distance from the Sun cannot be the whole story, for otherwise the 
Moon would be forested and fair, which patently it is not. For that you need to have: 

 

    The right kind of planet.I don’t imagine even many geophysicists, when asked to count 
their blessings, would include living on a planet with a molten interior, but it’s a pretty near 
certainty that without all that magma swirling around beneath us we wouldn’t be here now. 
Apart from much else, our lively interior created the outgassing that helped to build an 
atmosphere and provided us with the magnetic field that shields us from cosmic radiation. It 
also gave us plate tectonics, which continually renews and rumples the surface. If Earth were 
perfectly smooth, it would be covered everywhere with water to a depth of four kilometers. 
There might be life in that lonesome ocean, but there certainly wouldn’t be baseball. 

    In addition to having a beneficial interior, we also have the right elements in the correct 
proportions. In the most literal way, we are made of the right stuff. This is so crucial to our 
well-being that we are going to discuss it more fully in a minute, but first we need to consider 
the two remaining factors, beginning with another one that is often overlooked: 
                                                 
1 The discovery of extremophiles in the boiling mudpots of Yellowstone and similar organisms found elsewhere 
made scientists realize that actually life of a type could range much farther than that-even, perhaps, beneath the 
icy skin of Pluto. What we are talking about here are the conditions that would produce reasonably complex 
surface creatures. 



 

    We’re a twin planet.Not many of us normally think of the Moon as a companion planet, 
but that is in effect what it is. Most moons are tiny in relation to their master planet. The 
Martian satellites of Phobos and Deimos, for instance, are only about ten kilometers in 
diameter. Our Moon, however, is more than a quarter the diameter of the Earth, which makes 
ours the only planet in the solar system with a sizeable moon in comparison to itself (except 
Pluto, which doesn’t really count because Pluto is itself so small), and what a difference that 
makes to us. 

    Without the Moon’s steadying influence, the Earth would wobble like a dying top, with 
goodness knows what consequences for climate and weather. The Moon’s steady gravitational 
influence keeps the Earth spinning at the right speed and angle to provide the sort of stability 
necessary for the long and successful development of life. This won’t go on forever. The 
Moon is slipping from our grasp at a rate of about 1.5 inches a year. In another two billion 
years it will have receded so far that it won’t keep us steady and we will have to come up with 
some other solution, but in the meantime you should think of it as much more than just a 
pleasant feature in the night sky. 

    For a long time, astronomers assumed that the Moon and Earth either formed together or 
that the Earth captured the Moon as it drifted by. We now believe, as you will recall from an 
earlier chapter, that about 4.5 billion years ago a Mars-sized object slammed into Earth, 
blowing out enough material to create the Moon from the debris. This was obviously a very 
good thing for us—but especially so as it happened such a long time ago. If it had happened in 
1896 or last Wednesday clearly we wouldn’t be nearly so pleased about it. Which brings us to 
our fourth and in many ways most crucial consideration: 

 

    Timing.The universe is an amazingly fickle and eventful place, and our existence within it 
is a wonder. If a long and unimaginably complex sequence of events stretching back 4.6 
billion years or so hadn’t played out in a particular manner at particular times—if, to take just 
one obvious instance, the dinosaurs hadn’t been wiped out by a meteor when they were—you 
might well be six inches long, with whiskers and a tail, and reading this in a burrow. 

    We don’t really know for sure because we have nothing else to compare our own existence 
to, but it seems evident that if you wish to end up as a moderately advanced, thinking society, 
you need to be at the right end of a very long chain of outcomes involving reasonable periods 
of stability interspersed with just the right amount of stress and challenge (ice ages appear to 
be especially helpful in this regard) and marked by a total absence of real cataclysm. As we 
shall see in the pages that remain to us, we are very lucky to find ourselves in that position. 

    And on that note, let us now turn briefly to the elements that made us. 

  

    There are ninety-two naturally occurring elements on Earth, plus a further twenty or so that 
have been created in labs, but some of these we can immediately put to one side—as, in fact, 
chemists themselves tend to do. Not a few of our earthly chemicals are surprisingly little 
known. Astatine, for instance, is practically unstudied. It has a name and a place on the 
periodic table (next door to Marie Curie’s polonium), but almost nothing else. The problem 



isn’t scientific indifference, but rarity. There just isn’t much astatine out there. The most 
elusive element of all, however, appears to be francium, which is so rare that it is thought that 
our entire planet may contain, at any given moment, fewer than twenty francium atoms. 
Altogether only about thirty of the naturally occurring elements are widespread on Earth, and 
barely half a dozen are of central importance to life. 

    As you might expect, oxygen is our most abundant element, accounting for just under 50 
percent of the Earth’s crust, but after that the relative abundances are often surprising. Who 
would guess, for instance, that silicon is the second most common element on Earth or that 
titanium is tenth? Abundance has little to do with their familiarity or utility to us. Many of the 
more obscure elements are actually more common than the better-known ones. There is more 
cerium on Earth than copper, more neodymium and lanthanum than cobalt or nitrogen. Tin 
barely makes it into the top fifty, eclipsed by such relative obscurities as praseodymium, 
samarium, gadolinium, and dysprosium. 

    Abundance also has little to do with ease of detection. Aluminum is the fourth most 
common element on Earth, accounting for nearly a tenth of everything that’s underneath your 
feet, but its existence wasn’t even suspected until it was discovered in the nineteenth century 
by Humphry Davy, and for a long time after that it was treated as rare and precious. Congress 
nearly put a shiny lining of aluminum foil atop the Washington Monument to show what a 
classy and prosperous nation we had become, and the French imperial family in the same 
period discarded the state silver dinner service and replaced it with an aluminum one. The 
fashion was cutting edge even if the knives weren’t. 

    Nor does abundance necessarily relate to importance. Carbon is only the fifteenth most 
common element, accounting for a very modest 0.048 percent of Earth’s crust, but we would 
be lost without it. What sets the carbon atom apart is that it is shamelessly promiscuous. It is 
the party animal of the atomic world, latching on to many other atoms (including itself) and 
holding tight, forming molecular conga lines of hearty robustness—the very trick of nature 
necessary to build proteins and DNA. As Paul Davies has written: “If it wasn’t for carbon, life 
as we know it would be impossible. Probably any sort of life would be impossible.” Yet 
carbon is not all that plentiful even in humans, who so vitally depend on it. Of every 200 
atoms in your body, 126 are hydrogen, 51 are oxygen, and just 19 are carbon.2  

    Other elements are critical not for creating life but for sustaining it. We need iron to 
manufacture hemoglobin, and without it we would die. Cobalt is necessary for the creation of 
vitamin B12. Potassium and a very little sodium are literally good for your nerves. 
Molybdenum, manganese, and vanadium help to keep your enzymes purring. Zinc—bless it—
oxidizes alcohol. 

    We have evolved to utilize or tolerate these things—we could hardly be here otherwise—
but even then we live within narrow ranges of acceptance. Selenium is vital to all of us, but 
take in just a little too much and it will be the last thing you ever do. The degree to which 
organisms require or tolerate certain elements is a relic of their evolution. Sheep and cattle 
now graze side by side, but actually have very different mineral requirements. Modern cattle 
need quite a lot of copper because they evolved in parts of Europe and Africa where copper 
was abundant. Sheep, on the other hand, evolved in copper-poor areas of Asia Minor. As a 
rule, and not surprisingly, our tolerance for elements is directly proportionate to their 

                                                 
2 Of the remaining four, three are nitrogen and the remaining atom is divided among all the other elements.  
 



abundance in the Earth’s crust. We have evolved to expect, and in some cases actually need, 
the tiny amounts of rare elements that accumulate in the flesh or fiber that we eat. But step up 
the doses, in some cases by only a tiny amount, and we can soon cross a threshold. Much of 
this is only imperfectly understood. No one knows, for example, whether a tiny amount of 
arsenic is necessary for our well-being or not. Some authorities say it is; some not. All that is 
certain is that too much of it will kill you. 

    The properties of the elements can become more curious still when they are combined. 
Oxygen and hydrogen, for instance, are two of the most combustion-friendly elements around, 
but put them together and they make incombustible water.3 Odder still in combination are 
sodium, one of the most unstable of all elements, and chlorine, one of the most toxic. Drop a 
small lump of pure sodium into ordinary water and it will explode with enough force to kill. 
Chlorine is even more notoriously hazardous. Though useful in small concentrations for 
killing microorganisms (it’s chlorine you smell in bleach), in larger volumes it is lethal. 
Chlorine was the element of choice for many of the poison gases of the First World War. And, 
as many a sore-eyed swimmer will attest, even in exceedingly dilute form the human body 
doesn’t appreciate it. Yet put these two nasty elements together and what do you get? Sodium 
chloride—common table salt. 

    By and large, if an element doesn’t naturally find its way into our systems—if it isn’t 
soluble in water, say—we tend to be intolerant of it. Lead poisons us because we were never 
exposed to it until we began to fashion it into food vessels and pipes for plumbing. (Not 
incidentally, lead’s symbol is Pb, for the Latin plumbum, the source word for our modern 
plumbing.) The Romans also flavored their wine with lead, which may be part of the reason 
they are not the force they used to be. As we have seen elsewhere, our own performance with 
lead (not to mention mercury, cadmium, and all the other industrial pollutants with which we 
routinely dose ourselves) does not leave us a great deal of room for smirking. When elements 
don’t occur naturally on Earth, we have evolved no tolerance for them, and so they tend to be 
extremely toxic to us, as with plutonium. Our tolerance for plutonium is zero: there is no level 
at which it is not going to make you want to lie down. 

    I have brought you a long way to make a small point: a big part of the reason that Earth 
seems so miraculously accommodating is that we evolved to suit its conditions. What we 
marvel at is not that it is suitable to life but that it is suitable to our life—and hardly 
surprising, really. It may be that many of the things that make it so splendid to us—well-
proportioned Sun, doting Moon, sociable carbon, more magma than you can shake a stick at, 
and all the rest—seem splendid simply because they are what we were born to count on. No 
one can altogether say. 

    Other worlds may harbor beings thankful for their silvery lakes of mercury and drifting 
clouds of ammonia. They may be delighted that their planet doesn’t shake them silly with its 
grinding plates or spew messy gobs of lava over the landscape, but rather exists in a 
permanent nontectonic tranquility. Any visitors to Earth from afar would almost certainly, at 
the very least, be bemused to find us living in an atmosphere composed of nitrogen, a gas 
sulkily disinclined to react with anything, and oxygen, which is so partial to combustion that 
we must place fire stations throughout our cities to protect ourselves from its livelier effects. 
But even if our visitors were oxygen-breathing bipeds with shopping malls and a fondness for 
                                                 
3 Oxygen itself is not combustible; it merely facilitates the combus tion of other things. This is just as well, for if 
oxygen were corn bustible, each time you lit a match all the air around you would bur into flame. Hydrogen gas, 
on the other hand, is extremely corn bustible, as the dirigible Hindenburg demonstrated on May 6, 193 in 
Lakehurst, New Jersey, when its hydrogen fuel burst explosive) into flame, killing thirty-six people. 



action movies, it is unlikely that they would find Earth ideal. We couldn’t even give them 
lunch because all our foods contain traces of manganese, selenium, zinc, and other elemental 
particles at least some of which would be poisonous to them. To them Earth might not seem a 
wondrously congenial place at all. 

    The physicist Richard Feynman used to make a joke about a posteriori conclusions, as they 
are called. “You know, the most amazing thing happened to me tonight,” he would say. “I 
saw a car with the license plate ARW 357. Can you imagine? Of all the millions of license 
plates in the state, what was the chance that I would see that particular one tonight? 
Amazing!” His point, of course, was that it is easy to make any banal situation seem 
extraordinary if you treat it as fateful. 

    So it is possible that the events and conditions that led to the rise of life on Earth are not 
quite as extraordinary as we like to think. Still, they were extraordinary enough, and one thing 
is certain: they will have to do until we find some better. 



17   INTO THE TROPOSPHERE 

 

 

 

THANK GOODNESS FOR the atmosphere. It keeps us warm. Without it, Earth would be a 
lifeless ball of ice with an average temperature of minus 60 degrees Fahrenheit. In addition, 
the atmosphere absorbs or deflects incoming swarms of cosmic rays, charged particles, 
ultraviolet rays, and the like. Altogether, the gaseous padding of the atmosphere is equivalent 
to a fifteen-foot thickness of protective concrete, and without it these invisible visitors from 
space would slice through us like tiny daggers. Even raindrops would pound us senseless if it 
weren’t for the atmosphere’s slowing drag. 

    The most striking thing about our atmosphere is that there isn’t very much of it. It extends 
upward for about 120 miles, which might seem reasonably bounteous when viewed from 
ground level, but if you shrank the Earth to the size of a standard desktop globe it would only 
be about the thickness of a couple of coats of varnish. 

    For scientific convenience, the atmosphere is divided into four unequal layers: troposphere, 
stratosphere, mesosphere, and ionosphere (now often called the thermosphere). The 
troposphere is the part that’s dear to us. It alone contains enough warmth and oxygen to allow 
us to function, though even it swiftly becomes uncongenial to life as you climb up through it. 
From ground level to its highest point, the troposphere (or “turning sphere”) is about ten miles 
thick at the equator and no more than six or seven miles high in the temperate latitudes where 
most of us live. Eighty percent of the atmosphere’s mass, virtually all the water, and thus 
virtually all the weather are contained within this thin and wispy layer. There really isn’t 
much between you and oblivion. 

    Beyond the troposphere is the stratosphere. When you see the top of a storm cloud 
flattening out into the classic anvil shape, you are looking at the boundary between the 
troposphere and stratosphere. This invisible ceiling is known as the tropopause and was 
discovered in 1902 by a Frenchman in a balloon, Léon-Philippe Teisserenc de Bort. Pause in 
this sense doesn’t mean to stop momentarily but to cease altogether; it’s from the same Greek 
root as menopause. Even at its greatest extent, the tropopause is not very distant. A fast 
elevator of the sort used in modern skyscrapers could get you there in about twenty minutes, 
though you would be well advised not to make the trip. Such a rapid ascent without 
pressurization would, at the very least, result in severe cerebral and pulmonary edemas, a 
dangerous excess of fluids in the body’s tissues. When the doors opened at the viewing 
platform, anyone inside would almost certainly be dead or dying. Even a more measured 
ascent would be accompanied by a great deal of discomfort. The temperature six miles up can 
be -70 degrees Fahrenheit, and you would need, or at least very much appreciate, 
supplementary oxygen. 

    After you have left the troposphere the temperature soon warms up again, to about 40 
degrees Fahrenheit, thanks to the absorptive effects of ozone (something else de Bort 
discovered on his daring 1902 ascent). It then plunges to as low as -130 degrees Fahrenheit in 
the mesosphere before skyrocketing to 2,700 degrees Fahrenheit or more in the aptly named 
but very erratic thermosphere, where temperatures can vary by a thousand degrees from day 



to night—though it must be said that “temperature” at such a height becomes a somewhat 
notional concept. Temperature is really just a measure of the activity of molecules. At sea 
level, air molecules are so thick that one molecule can move only the tiniest distance—about 
three-millionths of an inch, to be precise—before banging into another. Because trillions of 
molecules are constantly colliding, a lot of heat gets exchanged. But at the height of the 
thermosphere, at fifty miles or more, the air is so thin that any two molecules will be miles 
apart and hardly ever come in contact. So although each molecule is very warm, there are few 
interactions between them and thus little heat transference. This is good news for satellites 
and spaceships because if the exchange of heat were more efficient any man-made object 
orbiting at that level would burst into flame. 

    Even so, spaceships have to take care in the outer atmosphere, particularly on return trips to 
Earth, as the space shuttle Columbia demonstrated all too tragically in February 2003. 
Although the atmosphere is very thin, if a craft comes in at too steep an angle—more than 
about 6 degrees—or too swiftly it can strike enough molecules to generate drag of an 
exceedingly combustible nature. Conversely, if an incoming vehicle hit the thermosphere at 
too shallow an angle, it could well bounce back into space, like a pebble skipped across water. 

    But you needn’t venture to the edge of the atmosphere to be reminded of what hopelessly 
ground-hugging beings we are. As anyone who has spent time in a lofty city will know, you 
don’t have to rise too many thousands of feet from sea level before your body begins to 
protest. Even experienced mountaineers, with the benefits of fitness, training, and bottled 
oxygen, quickly become vulnerable at height to confusion, nausea, exhaustion, frostbite, 
hypothermia, migraine, loss of appetite, and a great many other stumbling dysfunctions. In a 
hundred emphatic ways the human body reminds its owner that it wasn’t designed to operate 
so far above sea level. 

    “Even under the most favorable circumstances,” the climber Peter Habeler has written of 
conditions atop Everest, “every step at that altitude demands a colossal effort of will. You 
must force yourself to make every movement, reach for every handhold. You are perpetually 
threatened by a leaden, deadly fatigue.” In The Other Side of Everest, the British mountaineer 
and filmmaker Matt Dickinson records how Howard Somervell, on a 1924 British expedition 
up Everest, “found himself choking to death after a piece of infected flesh came loose and 
blocked his windpipe.” With a supreme effort Somervell managed to cough up the 
obstruction. It turned out to be “the entire mucus lining of his larynx.” 

    Bodily distress is notorious above 25,000 feet—the area known to climbers as the Death 
Zone—but many people become severely debilitated, even dangerously ill, at heights of no 
more than 15,000 feet or so. Susceptibility has little to do with fitness. Grannies sometimes 
caper about in lofty situations while their fitter offspring are reduced to helpless, groaning 
heaps until conveyed to lower altitudes. 

    The absolute limit of human tolerance for continuous living appears to be about 5,500 
meters, or 18,000 feet, but even people conditioned to living at altitude could not tolerate such 
heights for long. Frances Ashcroft, in Life at the Extremes, notes that there are Andean sulfur 
mines at 5,800 meters, but that the miners prefer to descend 460 meters each evening and 
climb back up the following day, rather than live continuously at that elevation. People who 
habitually live at altitude have often spent thousands of years developing disproportionately 
large chests and lungs, increasing their density of oxygen-bearing red blood cells by almost a 
third, though there are limits to how much thickening with red cells the blood supply can 



stand. Moreover, above 5,500 meters even the most well-adapted women cannot provide a 
growing fetus with enough oxygen to bring it to its full term. 

    In the 1780s when people began to make experimental balloon ascents in Europe, 
something that surprised them was how chilly it got as they rose. The temperature drops about 
3 degrees Fahrenheit with every thousand feet you climb. Logic would seem to indicate that 
the closer you get to a source of heat, the warmer you would feel. Part of the explanation is 
that you are not really getting nearer the Sun in any meaningful sense. The Sun is ninety-three 
million miles away. To move a couple of thousand feet closer to it is like taking one step 
closer to a bushfire in Australia when you are standing in Ohio, and expecting to smell smoke. 
The answer again takes us back to the question of the density of molecules in the atmosphere. 
Sunlight energizes atoms. It increases the rate at which they jiggle and jounce, and in their 
enlivened state they crash into one another, releasing heat. When you feel the sun warm on 
your back on a summer’s day, it’s really excited atoms you feel. The higher you climb, the 
fewer molecules there are, and so the fewer collisions between them. 

    Air is deceptive stuff. Even at sea level, we tend to think of the air as being ethereal and all 
but weightless. In fact, it has plenty of bulk, and that bulk often exerts itself. As a marine 
scientist named Wyville Thomson wrote more than a century ago: “We sometimes find when 
we get up in the morning, by a rise of an inch in the barometer, that nearly half a ton has been 
quietly piled upon us during the night, but we experience no inconvenience, rather a feeling of 
exhilaration and buoyancy, since it requires a little less exertion to move our bodies in the 
denser medium.” The reason you don’t feel crushed under that extra half ton of pressure is the 
same reason your body would not be crushed deep beneath the sea: it is made mostly of 
incompressible fluids, which push back, equalizing the pressures within and without. 

    But get air in motion, as with a hurricane or even a stiff breeze, and you will quickly be 
reminded that it has very considerable mass. Altogether there are about 5,200 million million 
tons of air around us—25 million tons for every square mile of the planet—a not 
inconsequential volume. When you get millions of tons of atmosphere rushing past at thirty or 
forty miles an hour, it’s hardly a surprise that limbs snap and roof tiles go flying. As Anthony 
Smith notes, a typical weather front may consist of 750 million tons of cold air pinned 
beneath a billion tons of warmer air. Hardly a wonder that the result is at times 
meteorologically exciting. 

    Certainly there is no shortage of energy in the world above our heads. One thunderstorm, it 
has been calculated, can contain an amount of energy equivalent to four days’ use of 
electricity for the whole United States. In the right conditions, storm clouds can rise to heights 
of six to ten miles and contain updrafts and downdrafts of one hundred miles an hour. These 
are often side by side, which is why pilots don’t want to fly through them. In all, the internal 
turmoil particles within the cloud pick up electrical charges. For reasons not entirely 
understood the lighter particles tend to become positively charged and to be wafted by air 
currents to the top of the cloud. The heavier particles linger at the base, accumulating negative 
charges. These negatively charged particles have a powerful urge to rush to the positively 
charged Earth, and good luck to anything that gets in their way. A bolt of lightning travels at 
270,000 miles an hour and can heat the air around it to a decidedly crisp 50,000 degrees 
Fahrenheit, several times hotter than the surface of the sun. At any one moment 1,800 
thunderstorms are in progress around the globe—some 40,000 a day. Day and night across the 
planet every second about a hundred lightning bolts hit the ground. The sky is a lively place. 



    Much of our knowledge of what goes on up there is surprisingly recent. Jet streams, usually 
located about 30,000 to 35,000 feet up, can bowl along at up to 180 miles an hour and vastly 
influence weather systems over whole continents, yet their existence wasn’t suspected until 
pilots began to fly into them during the Second World War. Even now a great deal of 
atmospheric phenomena is barely understood. A form of wave motion popularly known as 
clear-air turbulence occasionally enlivens airplane flights. About twenty such incidents a year 
are serious enough to need reporting. They are not associated with cloud structures or 
anything else that can be detected visually or by radar. They are just pockets of startling 
turbulence in the middle of tranquil skies. In a typical incident, a plane en route from 
Singapore to Sydney was flying over central Australia in calm conditions when it suddenly 
fell three hundred feet—enough to fling unsecured people against the ceiling. Twelve people 
were injured, one seriously. No one knows what causes such disruptive cells of air. 

  

    The process that moves air around in the atmosphere is the same process that drives the 
internal engine of the planet, namely convection. Moist, warm air from the equatorial regions 
rises until it hits the barrier of the tropopause and spreads out. As it travels away from the 
equator and cools, it sinks. When it hits bottom, some of the sinking air looks for an area of 
low pressure to fill and heads back for the equator, completing the circuit. 

    At the equator the convection process is generally stable and the weather predictably fair, 
but in temperate zones the patterns are far more seasonal, localized, and random, which 
results in an endless battle between systems of high-pressure air and low. Low-pressure 
systems are created by rising air, which conveys water molecules into the sky, forming clouds 
and eventually rain. Warm air can hold more moisture than cool air, which is why tropical and 
summer storms tend to be the heaviest. Thus low areas tend to be associated with clouds and 
rain, and highs generally spell sunshine and fair weather. When two such systems meet, it 
often becomes manifest in the clouds. For instance, stratus clouds—those unlovable, 
featureless sprawls that give us our overcast skies—happen when moisture-bearing updrafts 
lack the oomph to break through a level of more stable air above, and instead spread out, like 
smoke hitting a ceiling. Indeed, if you watch a smoker sometime, you can get a very good 
idea of how things work by watching how smoke rises from a cigarette in a still room. At 
first, it goes straight up (this is called a laminar flow, if you need to impress anyone), and then 
it spreads out in a diffused, wavy layer. The greatest supercomputer in the world, taking 
measurements in the most carefully controlled environment, cannot tell you what forms these 
ripplings will take, so you can imagine the difficulties that confront meteorologists when they 
try to predict such motions in a spinning, windy, large-scale world. 

    What we do know is that because heat from the Sun is unevenly distributed, differences in 
air pressure arise on the planet. Air can’t abide this, so it rushes around trying to equalize 
things everywhere. Wind is simply the air’s way of trying to keep things in balance. Air 
always flows from areas of high pressure to areas of low pressure (as you would expect; think 
of anything with air under pressure—a balloon or an air tank—and think how insistently that 
pressured air wants to get someplace else), and the greater the discrepancy in pressures the 
faster the wind blows. 

    Incidentally, wind speeds, like most things that accumulate, grow exponentially, so a wind 
blowing at two hundred miles an hour is not simply ten times stronger than a wind blowing at 
twenty miles an hour, but a hundred times stronger—and hence that much more destructive. 
Introduce several million tons of air to this accelerator effect and the result can be exceedingly 



energetic. A tropical hurricane can release in twenty-four hours as much energy as a rich, 
medium-sized nation like Britain or France uses in a year. 

    The impulse of the atmosphere to seek equilibrium was first suspected by Edmond 
Halley—the man who was everywhere—and elaborated upon in the eighteenth century by his 
fellow Briton George Hadley, who saw that rising and falling columns of air tended to 
produce “cells” (known ever since as “Hadley cells”). Though a lawyer by profession, Hadley 
had a keen interest in the weather (he was, after all, English) and also suggested a link 
between his cells, the Earth’s spin, and the apparent deflections of air that give us our trade 
winds. However, it was an engineering professor at the École Polytechnique in Paris, 
Gustave-Gaspard de Coriolis, who worked out the details of these interactions in 1835, and 
thus we call it the Coriolis effect. (Coriolis’s other distinction at the school was to introduce 
watercoolers, which are still known there as Corios, apparently.) The Earth revolves at a brisk 
1,041 miles an hour at the equator, though as you move toward the poles the rate slopes off 
considerably, to about 600 miles an hour in London or Paris, for instance. The reason for this 
is self-evident when you think about it. If you are on the equator the spinning Earth has to 
carry you quite a distance—about 40,000 kilometers—to get you back to the same spot. If you 
stand beside the North Pole, however, you may need travel only a few feet to complete a 
revolution, yet in both cases it takes twenty-four hours to get you back to where you began. 
Therefore, it follows that the closer you get to the equator the faster you must be spinning. 

    The Coriolis effect explains why anything moving through the air in a straight line laterally 
to the Earth’s spin will, given enough distance, seem to curve to the right in the northern 
hemisphere and to the left in the southern as the Earth revolves beneath it. The standard way 
to envision this is to imagine yourself at the center of a large carousel and tossing a ball to 
someone positioned on the edge. By the time the ball gets to the perimeter, the target person 
has moved on and the ball passes behind him. From his perspective, it looks as if it has curved 
away from him. That is the Coriolis effect, and it is what gives weather systems their curl and 
sends hurricanes spinning off like tops. The Coriolis effect is also why naval guns firing 
artillery shells have to adjust to left or right; a shell fired fifteen miles would otherwise 
deviate by about a hundred yards and plop harmlessly into the sea. 

  

    Considering the practical and psychological importance of the weather to nearly everyone, 
it’s surprising that meteorology didn’t really get going as a science until shortly before the 
turn of the nineteenth century (though the term meteorology itself had been around since 
1626, when it was coined by a T. Granger in a book of logic). 

    Part of the problem was that successful meteorology requires the precise measurement of 
temperatures, and thermometers for a long time proved more difficult to make than you might 
expect. An accurate reading was dependent on getting a very even bore in a glass tube, and 
that wasn’t easy to do. The first person to crack the problem was Daniel Gabriel Fahrenheit, a 
Dutch maker of instruments, who produced an accurate thermometer in 1717. However, for 
reasons unknown he calibrated the instrument in a way that put freezing at 32 degrees and 
boiling at 212 degrees. From the outset this numeric eccentricity bothered some people, and in 
1742 Anders Celsius, a Swedish astronomer, came up with a competing scale. In proof of the 
proposition that inventors seldom get matters entirely right, Celsius made boiling point zero 
and freezing point 100 on his scale, but that was soon reversed. 



    The person most frequently identified as the father of modern meteorology was an English 
pharmacist named Luke Howard, who came to prominence at the beginning of the nineteenth 
century. Howard is chiefly remembered now for giving cloud types their names in 1803. 
Although he was an active and respected member of the Linnaean Society and employed 
Linnaean principles in his new scheme, Howard chose the rather more obscure Askesian 
Society as the forum to announce his new system of classification. (The Askesian Society, 
you may just recall from an earlier chapter, was the body whose members were unusually 
devoted to the pleasures of nitrous oxide, so we can only hope they treated Howard’s 
presentation with the sober attention it deserved. It is a point on which Howard scholars are 
curiously silent.) 

    Howard divided clouds into three groups: stratus for the layered clouds, cumulus for the 
fluffy ones (the word means “heaped” in Latin), and cirrus (meaning “curled”) for the high, 
thin feathery formations that generally presage colder weather. To these he subsequently 
added a fourth term, nimbus (from the Latin for “cloud”), for a rain cloud. The beauty of 
Howard’s system was that the basic components could be freely recombined to describe every 
shape and size of passing cloud—stratocumulus, cirrostratus, cumulocongestus, and so on. It 
was an immediate hit, and not just in England. The poet Johann von Goethe in Germany was 
so taken with the system that he dedicated four poems to Howard. 

    Howard’s system has been much added to over the years, so much so that the encyclopedic 
if little read International Cloud Atlas runs to two volumes, but interestingly virtually all the 
post-Howard cloud types—mammatus, pileus, nebulosis, spissatus, floccus, and mediocris are 
a sampling—have never caught on with anyone outside meteorology and not terribly much 
there, I’m told. Incidentally, the first, much thinner edition of that atlas, produced in 1896, 
divided clouds into ten basic types, of which the plumpest and most cushiony-looking was 
number nine, cumulonimbus.1 That seems to have been the source of the expression “to be on 
cloud nine.” 

    For all the heft and fury of the occasional anvil-headed storm cloud, the average cloud is 
actually a benign and surprisingly insubstantial thing. A fluffy summer cumulus several 
hundred yards to a side may contain no more than twenty-five or thirty gallons of water—
“about enough to fill a bathtub,” as James Trefil has noted. You can get some sense of the 
immaterial quality of clouds by strolling through fog—which is, after all, nothing more than a 
cloud that lacks the will to fly. To quote Trefil again: “If you walk 100 yards through a typical 
fog, you will come into contact with only about half a cubic inch of water—not enough to 
give you a decent drink.” In consequence, clouds are not great reservoirs of water. Only about 
0.035 percent of the Earth’s fresh water is floating around above us at any moment. 

    Depending on where it falls, the prognosis for a water molecule varies widely. If it lands in 
fertile soil it will be soaked up by plants or reevaporated directly within hours or days. If it 
finds its way down to the groundwater, however, it may not see sunlight again for many 
years—thousands if it gets really deep. When you look at a lake, you are looking at a 
collection of molecules that have been there on average for about a decade. In the ocean the 
residence time is thought to be more like a hundred years. Altogether about 60 percent of 

                                                 
1 If you have ever been struck by how beautifully crisp and well defined the edges of cumulus clouds tend to be, 
while other clouds are more blurry, the explanation is that in a cumulus cloud there is a pronounced boundary 
between the moist interior of the cloud and the dry air beyond it. Any water molecule that strays beyond the edge 
of the cloud is immediately zapped by the dry air beyond, allowing the cloud to keep its fine edge. Much higher 
cirrus clouds are composed of ice, and the zone between the edge of the cloud and the air beyond is not so 
clearly delineated, which is why they tend to be blurry at the edges. 



water molecules in a rainfall are returned to the atmosphere within a day or two. Once 
evaporated, they spend no more than a week or so—Drury says twelve days—in the sky 
before falling again as rain. 

    Evaporation is a swift process, as you can easily gauge by the fate of a puddle on a 
summer’s day. Even something as large as the Mediterranean would dry out in a thousand 
years if it were not continually replenished. Such an event occurred a little under six million 
years ago and provoked what is known to science as the Messinian Salinity Crisis. What 
happened was that continental movement closed the Strait of Gibraltar. As the Mediterranean 
dried, its evaporated contents fell as freshwater rain into other seas, mildly diluting their 
saltiness—indeed, making them just dilute enough to freeze over larger areas than normal. 
The enlarged area of ice bounced back more of the Sun’s heat and pushed Earth into an ice 
age. So at least the theory goes. 

    What is certainly true, as far as we can tell, is that a little change in the Earth’s dynamics 
can have repercussions beyond our imagining. Such an event, as we shall see a little further 
on, may even have created us. 

  

    Oceans are the real powerhouse of the planet’s surface behavior. Indeed, meteorologists 
increasingly treat oceans and atmosphere as a single system, which is why we must give them 
a little of our attention here. Water is marvelous at holding and transporting heat. Every day, 
the Gulf Stream carries an amount of heat to Europe equivalent to the world’s output of coal 
for ten years, which is why Britain and Ireland have such mild winters compared with Canada 
and Russia. 

    But water also warms slowly, which is why lakes and swimming pools are cold even on the 
hottest days. For that reason there tends to be a lag in the official, astronomical start of a 
season and the actual feeling that that season has started. So spring may officially start in the 
northern hemisphere in March, but it doesn’t feel like it in most places until April at the very 
earliest. 

    The oceans are not one uniform mass of water. Their differences in temperature, salinity, 
depth, density, and so on have huge effects on how they move heat around, which in turn 
affects climate. The Atlantic, for instance, is saltier than the Pacific, and a good thing too. The 
saltier water is the denser it is, and dense water sinks. Without its extra burden of salt, the 
Atlantic currents would proceed up to the Arctic, warming the North Pole but depriving 
Europe of all that kindly warmth. The main agent of heat transfer on Earth is what is known 
as thermohaline circulation, which originates in slow, deep currents far below the surface—a 
process first detected by the scientist-adventurer Count von Rumford in 1797.2 What happens 
is that surface waters, as they get to the vicinity of Europe, grow dense and sink to great 
depths and begin a slow trip back to the southern hemisphere. When they reach Antarctica, 
they are caught up in the Antarctic Circumpolar Current, where they are driven onward into 
the Pacific. The process is very slow—it can take 1,500 years for water to travel from the 

                                                 
2 The term means a number of things to different people, it appears. In November 2002, Carl Wunsch of MIT 
published a report in Science, "What Is the Thermohaline Circulation?," in which he noted that the expression 
has been used in leading journals to signify at least seven different phenomena (circulation at the abyssal level, 
circulation driven by differences in density or buoyancy, "meridional overturning circulation of mass," and so 
on)-though all have to do with ocean circulations and the transfer of heat, the cautiously vague and embracing 
sense in which I have employed it here. 



North Atlantic to the mid-Pacific—but the volumes of heat and water they move are very 
considerable, and the influence on the climate is enormous. 

    (As for the question of how anyone could possibly figure out how long it takes a drop of 
water to get from one ocean to another, the answer is that scientists can measure compounds 
in the water like chlorofluorocarbons and work out how long it has been since they were last 
in the air. By comparing a lot of measurements from different depths and locations they can 
reasonably chart the water’s movement.) 

    Thermohaline circulation not only moves heat around, but also helps to stir up nutrients as 
the currents rise and fall, making greater volumes of the ocean habitable for fish and other 
marine creatures. Unfortunately, it appears the circulation may also be very sensitive to 
change. According to computer simulations, even a modest dilution of the ocean’s salt 
content—from increased melting of the Greenland ice sheet, for instance—could disrupt the 
cycle disastrously. 

    The seas do one other great favor for us. They soak up tremendous volumes of carbon and 
provide a means for it to be safely locked away. One of the oddities of our solar system is that 
the Sun burns about 25 percent more brightly now than when the solar system was young. 
This should have resulted in a much warmer Earth. Indeed, as the English geologist Aubrey 
Manning has put it, “This colossal change should have had an absolutely catastrophic effect 
on the Earth and yet it appears that our world has hardly been affected.” 

    So what keeps the world stable and cool? 

    Life does. Trillions upon trillions of tiny marine organisms that most of us have never 
heard of—foraminiferans and coccoliths and calcareous algae—capture atmospheric carbon, 
in the form of carbon dioxide, when it falls as rain and use it (in combination with other 
things) to make their tiny shells. By locking the carbon up in their shells, they keep it from 
being reevaporated into the atmosphere, where it would build up dangerously as a greenhouse 
gas. Eventually all the tiny foraminiferans and coccoliths and so on die and fall to the bottom 
of the sea, where they are compressed into limestone. It is remarkable, when you behold an 
extraordinary natural feature like the White Cliffs of Dover in England, to reflect that it is 
made up of nothing but tiny deceased marine organisms, but even more remarkable when you 
realize how much carbon they cumulatively sequester. A six-inch cube of Dover chalk will 
contain well over a thousand liters of compressed carbon dioxide that would otherwise be 
doing us no good at all. Altogether there is about twenty thousand times as much carbon 
locked away in the Earth’s rocks as in the atmosphere. Eventually much of that limestone will 
end up feeding volcanoes, and the carbon will return to the atmosphere and fall to the Earth in 
rain, which is why the whole is called the long-term carbon cycle. The process takes a very 
long time—about half a million years for a typical carbon atom—but in the absence of any 
other disturbance it works remarkably well at keeping the climate stable. 

    Unfortunately, human beings have a careless predilection for disrupting this cycle by 
putting lots of extra carbon into the atmosphere whether the foraminiferans are ready for it or 
not. Since 1850, it has been estimated, we have lofted about a hundred billion tons of extra 
carbon into the air, a total that increases by about seven billion tons each year. Overall, that’s 
not actually all that much. Nature—mostly through the belchings of volcanoes and the decay 
of plants—sends about 200 billion tons of carbon dioxide into the atmosphere each year, 
nearly thirty times as much as we do with our cars and factories. But you have only to look at 
the haze that hangs over our cities to see what a difference our contribution makes. 



    We know from samples of very old ice that the “natural” level of carbon dioxide in the 
atmosphere—that is, before we started inflating it with industrial activity—is about 280 parts 
per million. By 1958, when people in lab coats started to pay attention to it, it had risen to 315 
parts per million. Today it is over 360 parts per million and rising by roughly one-quarter of 1 
percent a year. By the end of the twenty-first century it is forecast to rise to about 560 parts 
per million. 

    So far, the Earth’s oceans and forests (which also pack away a lot of carbon) have managed 
to save us from ourselves, but as Peter Cox of the British Meteorological Office puts it: 
“There is a critical threshold where the natural biosphere stops buffering us from the effects of 
our emissions and actually starts to amplify them.” The fear is that there would be a runaway 
increase in the Earth’s warming. Unable to adapt, many trees and other plants would die, 
releasing their stores of carbon and adding to the problem. Such cycles have occasionally 
happened in the distant past even without a human contribution. The good news is that even 
here nature is quite wonderful. It is almost certain that eventually the carbon cycle would 
reassert itself and return the Earth to a situation of stability and happiness. The last time this 
happened, it took a mere sixty thousand years. 



18    THE BOUNDING MAIN 

 

 

 

IMAGINE TRYING TO live in a world dominated by dihydrogen oxide, a compound that has 
no taste or smell and is so variable in its properties that it is generally benign but at other 
times swiftly lethal. Depending on its state, it can scald you or freeze you. In the presence of 
certain organic molecules it can form carbonic acids so nasty that they can strip the leaves 
from trees and eat the faces off statuary. In bulk, when agitated, it can strike with a fury that 
no human edifice could withstand. Even for those who have learned to live with it, it is an 
often murderous substance. We call it water. 

    Water is everywhere. A potato is 80 percent water, a cow 74 percent, a bacterium 75 
percent. A tomato, at 95 percent, is little but water. Even humans are 65 percent water, 
making us more liquid than solid by a margin of almost two to one. Water is strange stuff. It is 
formless and transparent, and yet we long to be beside it. It has no taste and yet we love the 
taste of it. We will travel great distances and pay small fortunes to see it in sunshine. And 
even though we know it is dangerous and drowns tens of thousands of people every year, we 
can’t wait to frolic in it. 

    Because water is so ubiquitous we tend to overlook what an extraordinary substance it is. 
Almost nothing about it can be used to make reliable predictions about the properties of other 
liquids and vice versa. If you knew nothing of water and based your assumptions on the 
behavior of compounds most chemically akin to it—hydrogen selenide or hydrogen sulphide 
notably—you would expect it to boil at minus 135 degrees Fahrenheit and to be a gas at room 
temperature. 

    Most liquids when chilled contract by about 10 percent. Water does too, but only down to a 
point. Once it is within whispering distance of freezing, it begins—perversely, beguilingly, 
extremely improbably—to expand. By the time it is solid, it is almost a tenth more 
voluminous than it was before. Because it expands, ice floats on water—“an utterly bizarre 
property,” according to John Gribbin. If it lacked this splendid waywardness, ice would sink, 
and lakes and oceans would freeze from the bottom up. Without surface ice to hold heat in, 
the water’s warmth would radiate away, leaving it even chillier and creating yet more ice. 
Soon even the oceans would freeze and almost certainly stay that way for a very long time, 
probably forever—hardly the conditions to nurture life. Thankfully for us, water seems 
unaware of the rules of chemistry or laws of physics. 

    Everyone knows that water’s chemical formula is H2O, which means that it consists of one 
largish oxygen atom with two smaller hydrogen atoms attached to it. The hydrogen atoms 
cling fiercely to their oxygen host, but also make casual bonds with other water molecules. 
The nature of a water molecule means that it engages in a kind of dance with other water 
molecules, briefly pairing and then moving on, like the ever-changing partners in a quadrille, 
to use Robert Kunzig’s nice phrase. A glass of water may not appear terribly lively, but every 
molecule in it is changing partners billions of times a second. That’s why water molecules 
stick together to form bodies like puddles and lakes, but not so tightly that they can’t be easily 



separated as when, for instance, you dive into a pool of them. At any given moment only 15 
percent of them are actually touching. 

    In one sense the bond is very strong—it is why water molecules can flow uphill when 
siphoned and why water droplets on a car hood show such a singular determination to bead 
with their partners. It is also why water has surface tension. The molecules at the surface are 
attracted more powerfully to the like molecules beneath and beside them than to the air 
molecules above. This creates a sort of membrane strong enough to support insects and 
skipping stones. It is what gives the sting to a belly flop. 

    I hardly need point out that we would be lost without it. Deprived of water, the human body 
rapidly falls apart. Within days, the lips vanish “as if amputated, the gums blacken, the nose 
withers to half its length, and the skin so contracts around the eyes as to prevent blinking.” 
Water is so vital to us that it is easy to overlook that all but the smallest fraction of the water 
on Earth is poisonous to us—deadly poisonous—because of the salts within it. 

    We need salt to live, but only in very small amounts, and seawater contains way more—
about seventy times more—salt than we can safely metabolize. A typical liter of seawater will 
contain only about 2.5 teaspoons of common salt—the kind we sprinkle on food—but much 
larger amounts of other elements, compounds, and other dissolved solids, which are 
collectively known as salts. The proportions of these salts and minerals in our tissues is 
uncannily similar to seawater—we sweat and cry seawater, as Margulis and Sagan have put 
it—but curiously we cannot tolerate them as an input. Take a lot of salt into your body and 
your metabolism very quickly goes into crisis. From every cell, water molecules rush off like 
so many volunteer firemen to try to dilute and carry off the sudden intake of salt. This leaves 
the cells dangerously short of the water they need to carry out their normal functions. They 
become, in a word, dehydrated. In extreme situations, dehydration will lead to seizures, 
unconsciousness, and brain damage. Meanwhile, the overworked blood cells carry the salt to 
the kidneys, which eventually become overwhelmed and shut down. Without functioning 
kidneys you die. That is why we don’t drink seawater. 

    There are 320 million cubic miles of water on Earth and that is all we’re ever going to get. 
The system is closed: practically speaking, nothing can be added or subtracted. The water you 
drink has been around doing its job since the Earth was young. By 3.8 billion years ago, the 
oceans had (at least more or less) achieved their present volumes. 

    The water realm is known as the hydrosphere and it is overwhelmingly oceanic. Ninety-
seven percent of all the water on Earth is in the seas, the greater part of it in the Pacific, which 
covers half the planet and is bigger than all the landmasses put together. Altogether the 
Pacific holds just over half of all the ocean water (51.6 percent to be precise); the Atlantic has 
23.6 percent and the Indian Ocean 21.2 percent, leaving just 3.6 percent to be accounted for 
by all the other seas. The average depth of the ocean is 2.4 miles, with the Pacific on average 
about a thousand feet deeper than the Atlantic and Indian Oceans. Altogether 60 percent of 
the planet’s surface is ocean more than a mile deep. As Philip Ball notes, we would better call 
our planet not Earth but Water. 

    Of the 3 percent of Earth’s water that is fresh, most exists as ice sheets. Only the tiniest 
amount—0.036 percent—is found in lakes, rivers, and reservoirs, and an even smaller part—
just 0.001 percent—exists in clouds or as vapor. Nearly 90 percent of the planet’s ice is in 
Antarctica, and most of the rest is in Greenland. Go to the South Pole and you will be 
standing on nearly two miles of ice, at the North Pole just fifteen feet of it. Antarctica alone 



has six million cubic miles of ice—enough to raise the oceans by a height of two hundred feet 
if it all melted. But if all the water in the atmosphere fell as rain, evenly everywhere, the 
oceans would deepen by only an inch. 

    Sea level, incidentally, is an almost entirely notional concept. Seas are not level at all. 
Tides, winds, the Coriolis force, and other effects alter water levels considerably from one 
ocean to another and within oceans as well. The Pacific is about a foot and a half higher along 
its western edge—a consequence of the centrifugal force created by the Earth’s spin. Just as 
when you pull on a tub of water the water tends to flow toward the other end, as if reluctant to 
come with you, so the eastward spin of Earth piles water up against the ocean’s western 
margins. 

    Considering the age-old importance of the seas to us, it is striking how long it took the 
world to take a scientific interest in them. Until well into the nineteenth century most of what 
was known about the oceans was based on what washed ashore or came up in fishing nets, 
and nearly all that was written was based more on anecdote and supposition than on physical 
evidence. In the 1830s, the British naturalist Edward Forbes surveyed ocean beds throughout 
the Atlantic and Mediterranean and declared that there was no life at all in the seas below 
2,000 feet. It seemed a reasonable assumption. There was no light at that depth, so no plant 
life, and the pressures of water at such depths were known to be extreme. So it came as 
something of a surprise when, in 1860, one of the first transatlantic telegraph cables was 
hauled up for repairs from more than two miles down, and it was found to be thickly 
encrusted with corals, clams, and other living detritus. 

    The first really organized investigation of the seas didn’t come until 1872, when a joint 
expedition between the British Museum, the Royal Society, and the British government set 
forth from Portsmouth on a former warship called HMS Challenger. For three and a half 
years they sailed the world, sampling waters, netting fish, and hauling a dredge through 
sediments. It was evidently dreary work. Out of a complement of 240 scientists and crew, one 
in four jumped ship and eight more died or went mad—“driven to distraction by the mind-
numbing routine of years of dredging” in the words of the historian Samantha Weinberg. But 
they sailed across almost 70,000 nautical miles of sea, collected over 4,700 new species of 
marine organisms, gathered enough information to create a fifty-volume report (which took 
nineteen years to put together), and gave the world the name of a new scientific discipline: 
oceanography. They also discovered, by means of depth measurements, that there appeared to 
be submerged mountains in the mid-Atlantic, prompting some excited observers to speculate 
that they had found the lost continent of Atlantis. 

    Because the institutional world mostly ignored the seas, it fell to devoted—and very 
occasional—amateurs to tell us what was down there. Modern deep-water exploration begins 
with Charles William Beebe and Otis Barton in 1930. Although they were equal partners, the 
more colorful Beebe has always received far more written attention. Born in 1877 into a well-
to-do family in New York City, Beebe studied zoology at Columbia University, then took a 
job as a birdkeeper at the New York Zoological Society. Tiring of that, he decided to adopt 
the life of an adventurer and for the next quarter century traveled extensively through Asia 
and South America with a succession of attractive female assistants whose jobs were 
inventively described as “historian and technicist” or “assistant in fish problems.” He 
supported these endeavors with a succession of popular books with titles like Edge of the 
Jungle and Jungle Days, though he also produced some respectable books on wildlife and 
ornithology. 



    In the mid-1920s, on a trip to the Galápagos Islands, he discovered “the delights of 
dangling,” as he described deep-sea diving. Soon afterward he teamed up with Barton, who 
came from an even wealthier family, had also attended Columbia, and also longed for 
adventure. Although Beebe nearly always gets the credit, it was in fact Barton who designed 
the first bathysphere (from the Greek word for “deep”) and funded the $12,000 cost of its 
construction. It was a tiny and necessarily robust chamber, made of cast iron 1.5 inches thick 
and with two small portholes containing quartz blocks three inches thick. It held two men, but 
only if they were prepared to become extremely well acquainted. Even by the standards of the 
age, the technology was unsophisticated. The sphere had no maneuverability—it simply hung 
on the end of a long cable—and only the most primitive breathing system: to neutralize their 
own carbon dioxide they set out open cans of soda lime, and to absorb moisture they opened a 
small tub of calcium chloride, over which they sometimes waved palm fronds to encourage 
chemical reactions. 

    But the nameless little bathysphere did the job it was intended to do. On the first dive, in 
June 1930 in the Bahamas, Barton and Beebe set a world record by descending to 600 feet. By 
1934, they had pushed the record to 3,028 feet, where it would stay until after the war. Barton 
was confident the device was safe to a depth of 4,500 feet, though the strain on every bolt and 
rivet was audibly evident with each fathom they descended. At any depth, it was brave and 
risky work. At 3,000 feet, their little porthole was subjected to nineteen tons of pressure per 
square inch. Death at such a depth would have been instantaneous, as Beebe never failed to 
observe in his many books, articles, and radio broadcasts. Their main concern, however, was 
that the shipboard winch, straining to hold on to a metal ball and two tons of steel cable, 
would snap and send the two men plunging to the seafloor. In such an event, nothing could 
have saved them. 

    The one thing their descents didn’t produce was a great deal of worthwhile science. 
Although they encountered many creatures that had not been seen before, the limits of 
visibility and the fact that neither of the intrepid aquanauts was a trained oceanographer meant 
they often weren’t able to describe their findings in the kind of detail that real scientists 
craved. The sphere didn’t carry an external light, merely a 250-watt bulb they could hold up 
to the window, but the water below five hundred feet was practically impenetrable anyway, 
and they were peering into it through three inches of quartz, so anything they hoped to view 
would have to be nearly as interested in them as they were in it. About all they could report, in 
consequence, was that there were a lot of strange things down there. On one dive in 1934, 
Beebe was startled to spy a giant serpent “more than twenty feet long and very wide.” It 
passed too swiftly to be more than a shadow. Whatever it was, nothing like it has been seen 
by anyone since. Because of such vagueness their reports were generally ignored by 
academics. 

    After their record-breaking descent of 1934, Beebe lost interest in diving and moved on to 
other adventures, but Barton persevered. To his credit, Beebe always told anyone who asked 
that Barton was the real brains behind the enterprise, but Barton seemed unable to step from 
the shadows. He, too, wrote thrilling accounts of their underwater adventures and even starred 
in a Hollywood movie called Titans of the Deep, featuring a bathysphere and many exciting 
and largely fictionalized encounters with aggressive giant squid and the like. He even 
advertised Camel cigarettes (“They don’t give me jittery nerves”). In 1948 he increased the 
depth record by 50 percent, with a dive to 4,500 feet in the Pacific Ocean near California, but 
the world seemed determined to overlook him. One newspaper reviewer of Titans of the Deep 
actually thought the star of the film was Beebe. Nowadays, Barton is lucky to get a mention. 



    At all events, he was about to be comprehensively eclipsed by a father-and-son team from 
Switzerland, Auguste and Jacques Piccard, who were designing a new type of probe called a 
bathyscaphe (meaning “deep boat”). Christened Trieste, after the Italian city in which it was 
built, the new device maneuvered independently, though it did little more than just go up and 
down. On one of its first dives, in early 1954, it descended to below 13,287 feet, nearly three 
times Barton’s record-breaking dive of six years earlier. But deep-sea dives required a great 
deal of costly support, and the Piccards were gradually going broke. 

    In 1958, they did a deal with the U.S. Navy, which gave the Navy ownership but left them 
in control. Now flush with funds, the Piccards rebuilt the vessel, giving it walls five inches 
thick and shrinking the windows to just two inches in diameter—little more than peepholes. 
But it was now strong enough to withstand truly enormous pressures, and in January 1960 
Jacques Piccard and Lieutenant Don Walsh of the U.S. Navy sank slowly to the bottom of the 
ocean’s deepest canyon, the Mariana Trench, some 250 miles off Guam in the western Pacific 
(and discovered, not incidentally, by Harry Hess with his fathometer). It took just under four 
hours to fall 35,820 feet, or almost seven miles. Although the pressure at that depth was 
nearly 17,000 pounds per square inch, they noticed with surprise that they disturbed a bottom-
dwelling flatfish just as they touched down. They had no facilities for taking photographs, so 
there is no visual record of the event. 

    After just twenty minutes at the world’s deepest point, they returned to the surface. It was 
the only occasion on which human beings have gone so deep. 

    Forty years later, the question that naturally occurs is: Why has no one gone back since? To 
begin with, further dives were vigorously opposed by Vice Admiral Hyman G. Rickover, a 
man who had a lively temperament, forceful views, and, most pertinently, control of the 
departmental checkbook. He thought underwater exploration a waste of resources and pointed 
out that the Navy was not a research institute. The nation, moreover, was about to become 
fully preoccupied with space travel and the quest to send a man to the Moon, which made 
deep sea investigations seem unimportant and rather old-fashioned. But the decisive 
consideration was that the Trieste descent didn’t actually achieve much. As a Navy official 
explained years later: “We didn’t learn a hell of a lot from it, other than that we could do it. 
Why do it again?” It was, in short, a long way to go to find a flatfish, and expensive too. 
Repeating the exercise today, it has been estimated, would cost at least $100 million. 

    When underwater researchers realized that the Navy had no intention of pursuing a 
promised exploration program, there was a pained outcry. Partly to placate its critics, the 
Navy provided funding for a more advanced submersible, to be operated by the Woods Hole 
Oceanographic Institution of Massachusetts. Called Alvin, in somewhat contracted honor of 
the oceanographer Allyn C. Vine, it would be a fully maneuverable minisubmarine, though it 
wouldn’t go anywhere near as deep as the Trieste. There was just one problem: the designers 
couldn’t find anyone willing to build it. According to William J. Broad in The Universe 
Below: “No big company like General Dynamics, which made submarines for the Navy, 
wanted to take on a project disparaged by both the Bureau of Ships and Admiral Rickover, the 
gods of naval patronage.” Eventually, not to say improbably, Alvin was constructed by 
General Mills, the food company, at a factory where it made the machines to produce 
breakfast cereals. 

    As for what else was down there, people really had very little idea. Well into the 1950s, the 
best maps available to oceanographers were overwhelmingly based on a little detail from 
scattered surveys going back to 1929 grafted onto, essentially an ocean of guesswork. The 



Navy had excellent charts with which to guide submarines through canyons and around 
guyots, but it didn’t wish such information to fall into Soviet hands, so it kept its knowledge 
classified. Academics therefore had to make do with sketchy and antiquated surveys or rely 
on hopeful surmise. Even today our knowledge of the ocean floors remains remarkably low 
resolution. If you look at the Moon with a standard backyard telescope you will see 
substantial craters—Fracastorious, Blancanus, Zach, Planck, and many others familiar to any 
lunar scientist—that would be unknown if they were on our own ocean floors. We have better 
maps of Mars than we do of our own seabeds. 

    At the surface level, investigative techniques have also been a trifle ad hoc. In 1994, thirty-
four thousand ice hockey gloves were swept overboard from a Korean cargo ship during a 
storm in the Pacific. The gloves washed up all over, from Vancouver to Vietnam, helping 
oceanographers to trace currents more accurately than they ever had before. 

    Today Alvin is nearly forty years old, but it still remains America’s premier research vessel. 
There are still no submersibles that can go anywhere near the depth of the Mariana Trench 
and only five, including Alvin, that can reach the depths of the “abyssal plain”—the deep 
ocean floor—that covers more than half the planet’s surface. A typical submersible costs 
about $25,000 a day to operate, so they are hardly dropped into the water on a whim, still less 
put to sea in the hope that they will randomly stumble on something of interest. It’s rather as 
if our firsthand experience of the surface world were based on the work of five guys exploring 
on garden tractors after dark. According to Robert Kunzig, humans may have scrutinized 
“perhaps a millionth or a billionth of the sea’s darkness. Maybe less. Maybe much less.” 

    But oceanographers are nothing if not industrious, and they have made several important 
discoveries with their limited resources—including, in 1977, one of the most important and 
startling biological discoveries of the twentieth century. In that year Alvin found teeming 
colonies of large organisms living on and around deep-sea vents off the Galápagos Islands—
tube worms over ten feet long, clams a foot wide, shrimps and mussels in profusion, 
wriggling spaghetti worms. They all owed their existence to vast colonies of bacteria that 
were deriving their energy and sustenance from hydrogen sulfides—compounds profoundly 
toxic to surface creatures—that were pouring steadily from the vents. It was a world 
independent of sunlight, oxygen, or anything else normally associated with life. This was a 
living system based not on photosynthesis but on chemosynthesis, an arrangement that 
biologists would have dismissed as preposterous had anyone been imaginative enough to 
suggest it. 

    Huge amounts of heat and energy flow from these vents. Two dozen of them together will 
produce as much energy as a large power station, and the range of temperatures around them 
is enormous. The temperature at the point of outflow can be as much as 760 degrees 
Fahrenheit, while a few feet away the water may be only two or three degrees above freezing. 
A type of worm called an alvinellid was found living right on the margins, with the water 
temperature 140 degrees warmer at its head than at its tail. Before this it had been thought that 
no complex organisms could survive in water warmer than about 130 degrees, and here was 
one that was surviving warmer temperatures than that and extreme cold to boot. The 
discovery transformed our understanding of the requirements for life. 

    It also answered one of the great puzzles of oceanography—something that many of us 
didn’t realize was a puzzle—namely, why the oceans don’t grow saltier with time. At the risk 
of stating the obvious, there is a lot of salt in the sea—enough to bury every bit of land on the 
planet to a depth of about five hundred feet. Millions of gallons of fresh water evaporate from 



the ocean daily, leaving all their salts behind, so logically the seas ought to grow more salty 
with the passing years, but they don’t. Something takes an amount of salt out of the water 
equivalent to the amount being put in. For the longest time, no one could figure out what 
could be responsible for this. 

    Alvin’s discovery of the deep-sea vents provided the answer. Geophysicists realized that the 
vents were acting much like the filters in a fish tank. As water is taken down into the crust, 
salts are stripped from it, and eventually clean water is blown out again through the chimney 
stacks. The process is not swift—it can take up to ten million years to clean an ocean—but it 
is marvelously efficient as long as you are not in a hurry. 

  

    Perhaps nothing speaks more clearly of our psychological remoteness from the ocean 
depths than that the main expressed goal for oceanographers during International Geophysical 
Year of 1957–58 was to study “the use of ocean depths for the dumping of radioactive 
wastes.” This wasn’t a secret assignment, you understand, but a proud public boast. In fact, 
though it wasn’t much publicized, by 1957–58 the dumping of radioactive wastes had already 
been going on, with a certain appalling vigor, for over a decade. Since 1946, the United States 
had been ferrying fifty-five-gallon drums of radioactive gunk out to the Farallon Islands, 
some thirty miles off the California coast near San Francisco, where it simply threw them 
overboard. 

    It was all quite extraordinarily sloppy. Most of the drums were exactly the sort you see 
rusting behind gas stations or standing outside factories, with no protective linings of any 
type. When they failed to sink, which was usually, Navy gunners riddled them with bullets to 
let water in (and, of course, plutonium, uranium, and strontium out). Before it was halted in 
the 1990s, the United States had dumped many hundreds of thousands of drums into about 
fifty ocean sites—almost fifty thousand of them in the Farallons alone. But the U.S. was by no 
means alone. Among the other enthusiastic dumpers were Russia, China, Japan, New Zealand, 
and nearly all the nations of Europe. 

    And what effect might all this have had on life beneath the seas? Well, little, we hope, but 
we actually have no idea. We are astoundingly, sumptuously, radiantly ignorant of life 
beneath the seas. Even the most substantial ocean creatures are often remarkably little known 
to us—including the most mighty of them all, the great blue whale, a creature of such 
leviathan proportions that (to quote David Attenborough) its “tongue weighs as much as an 
elephant, its heart is the size of a car and some of its blood vessels are so wide that you could 
swim down them.” It is the most gargantuan beast that Earth has yet produced, bigger even 
than the most cumbrous dinosaurs. Yet the lives of blue whales are largely a mystery to us. 
Much of the time we have no idea where they are—where they go to breed, for instance, or 
what routes they follow to get there. What little we know of them comes almost entirely from 
eavesdropping on their songs, but even these are a mystery. Blue whales will sometimes break 
off a song, then pick it up again at the same spot six months later. Sometimes they strike up 
with a new song, which no member can have heard before but which each already knows. 
How they do this is not remotely understood. And these are animals that must routinely come 
to the surface to breathe. 

    For animals that need never surface, obscurity can be even more tantalizing. Consider the 
fabled giant squid. Though nothing on the scale of the blue whale, it is a decidedly substantial 
animal, with eyes the size of soccer balls and trailing tentacles that can reach lengths of sixty 



feet. It weighs nearly a ton and is Earth’s largest invertebrate. If you dumped one in a normal 
household swimming pool, there wouldn’t be much room for anything else. Yet no scientist—
no person as far as we know—has ever seen a giant squid alive. Zoologists have devoted 
careers to trying to capture, or just glimpse, living giant squid and have always failed. They 
are known mostly from being washed up on beaches—particularly, for unknown reasons, the 
beaches of the South Island of New Zealand. They must exist in large numbers because they 
form a central part of the sperm whale’s diet, and sperm whales take a lot of feeding.1  

    According to one estimate, there could be as many as thirty million species of animals 
living in the sea, most still undiscovered. The first hint of how abundant life is in the deep 
seas didn’t come until as recently as the 1960s with the invention of the epibenthic sled, a 
dredging device that captures organisms not just on and near the seafloor but also buried in 
the sediments beneath. In a single one-hour trawl along the continental shelf, at a depth of just 
under a mile, Woods Hole oceanographers Howard Sandler and Robert Hessler netted over 
25,000 creatures—worms, starfish, sea cucumbers, and the like—representing 365 species. 
Even at a depth of three miles, they found some 3,700 creatures representing almost 200 
species of organism. But the dredge could only capture things that were too slow or stupid to 
get out of the way. In the late 1960s a marine biologist named John Isaacs got the idea to 
lower a camera with bait attached to it, and found still more, in particular dense swarms of 
writhing hagfish, a primitive eel-like creature, as well as darting shoals of grenadier fish. 
Where a good food source is suddenly available—for instance, when a whale dies and sinks to 
the bottom—as many as 390 species of marine creature have been found dining off it. 
Interestingly, many of these creatures were found to have come from vents up to a thousand 
miles distant. These included such types as mussels and clams, which are hardly known as 
great travelers. It is now thought that the larvae of certain organisms may drift through the 
water until, by some unknown chemical means, they detect that they have arrived at a food 
opportunity and fall onto it. 

  

    So why, if the seas are so vast, do we so easily overtax them? Well, to begin with, the 
world’s seas are not uniformly bounteous. Altogether less than a tenth of the ocean is 
considered naturally productive. Most aquatic species like to be in shallow waters where there 
is warmth and light and an abundance of organic matter to prime the food chain. Coral reefs, 
for instance, constitute well under 1 percent of the ocean’s space but are home to about 25 
percent of its fish. 

Elsewhere, the oceans aren’t nearly so rich. Take Australia. With over 20,000 miles of 
coastline and almost nine million square miles of territorial waters, it has more sea lapping its 
shores than any other country, yet, as Tim Flannery notes, it doesn’t even make it into the top 
fifty among fishing nations. Indeed, Australia is a large net importer of seafood. This is 
because much of Australia’s waters are, like much of Australia itself, essentially desert. (A 
notable exception is the Great Barrier Reef off Queensland, which is sumptuously fecund.) 
Because the soil is poor, it produces little in the way of nutrient-rich runoff. 

Even where life thrives, it is often extremely sensitive to disturbance. In the 1970s, fishermen 
from Australia and, to a lesser extent, New Zealand discovered shoals of a little-known fish 
living at a depth of about half a mile on their continental shelves. They were known as orange 
                                                 
1 The indigestible parts of giant squid, in particular their beaks, accumulate in sperm whales' stomachs into the 
substance known as ambergris, which is used as a fixative in perfumes. The next time you spray on Chanel No. 5 
(assuming you do), you may wish to reflect that you are dousing yourself in distillate of unseen sea monster. 



roughy, they were delicious, and they existed in huge numbers. In no time at all, fishing fleets 
were hauling in forty thousand metric tons of roughy a year. Then marine biologists made 
some alarming discoveries. Roughy are extremely long lived and slow maturing. Some may 
be 150 years old; any roughy you have eaten may well have been born when Victoria was 
Queen. Roughy have adopted this exceedingly unhurried lifestyle because the waters they live 
in are so resource-poor. In such waters, some fish spawn just once in a lifetime. Clearly these 
are populations that cannot stand a great deal of disturbance. Unfortunately, by the time this 
was realized the stocks had been severely depleted. Even with careful management it will be 
decades before the populations recover, if they ever do. 

    Elsewhere, however, the misuse of the oceans has been more wanton than inadvertent. 
Many fishermen “fin” sharks—that is, slice their fins off, then dump them back into the water 
to die. In 1998, shark fins sold in the Far East for over $250 a pound. A bowl of shark fin 
soup retailed in Tokyo for $100. The World Wildlife Fund estimated in 1994 that the number 
of sharks killed each year was between 40 million and 70 million. 

    As of 1995, some 37,000 industrial-sized fishing ships, plus about a million smaller boats, 
were between them taking twice as many fish from the sea as they had just twenty-five years 
earlier. Trawlers are sometimes now as big as cruise ships and haul behind them nets big 
enough to hold a dozen jumbo jets. Some even use spotter planes to locate shoals of fish from 
the air. 

    It is estimated that about a quarter of every fishing net hauled up contains “by-catch”—fish 
that can’t be landed because they are too small or of the wrong type or caught in the wrong 
season. As one observer told the Economist: “We’re still in the Dark Ages. We just drop a net 
down and see what comes up.” Perhaps as much as twenty-two million metric tons of such 
unwanted fish are dumped back in the sea each year, mostly in the form of corpses. For every 
pound of shrimp harvested, about four pounds of fish and other marine creatures are 
destroyed. 

    Large areas of the North Sea floor are dragged clean by beam trawlers as many as seven 
times a year, a degree of disturbance that no ecosystem can withstand. At least two-thirds of 
species in the North Sea, by many estimates, are being overfished. Across the Atlantic things 
are no better. Halibut once abounded in such numbers off New England that individual boats 
could land twenty thousand pounds of it in a day. Now halibut is all but extinct off the 
northeast coast of North America. 

    Nothing, however, compares with the fate of cod. In the late fifteenth century, the explorer 
John Cabot found cod in incredible numbers on the eastern banks of North America—shallow 
areas of water popular with bottom-feeding fish like cod. Some of these banks were vast. 
Georges Banks off Massachusetts is bigger than the state it abuts. The Grand Banks off 
Newfoundland is bigger still and for centuries was always dense with cod. They were thought 
to be inexhaustible. Of course they were anything but. 

    By 1960, the number of spawning cod in the north Atlantic had fallen to an estimated 1.6 
million metric tons. By 1990 this had sunk to 22,000 metric tons. In commercial terms, the 
cod were extinct. “Fishermen,” wrote Mark Kurlansky in his fascinating history, Cod, “had 
caught them all.” The cod may have lost the western Atlantic forever. In 1992, cod fishing 
was stopped altogether on the Grand Banks, but as of last autumn, according to a report in 
Nature, stocks had not staged a comeback. Kurlansky notes that the fish of fish fillets and fish 



sticks was originally cod, but then was replaced by haddock, then by redfish, and lately by 
Pacific pollock. These days, he notes drily, “fish” is “whatever is left.” 

    Much the same can be said of many other seafoods. In the New England fisheries off 
Rhode Island, it was once routine to haul in lobsters weighing twenty pounds. Sometimes they 
reached thirty pounds. Left unmolested, lobsters can live for decades—as much as seventy 
years, it is thought—and they never stop growing. Nowadays few lobsters weigh more than 
two pounds on capture. “Biologists,” according to the New York Times, “estimate that 90 
percent of lobsters are caught within a year after they reach the legal minimum size at about 
age six.” Despite declining catches, New England fishermen continue to receive state and 
federal tax incentives that encourage them—in some cases all but compel them—to acquire 
bigger boats and to harvest the seas more intensively. Today fishermen of Massachusetts are 
reduced to fishing the hideous hagfish, for which there is a slight market in the Far East, but 
even their numbers are now falling. 

    We are remarkably ignorant of the dynamics that rule life in the sea. While marine life is 
poorer than it ought to be in areas that have been overfished, in some naturally impoverished 
waters there is far more life than there ought to be. The southern oceans around Antarctica 
produce only about 3 percent of the world’s phytoplankton—far too little, it would seem, to 
support a complex ecosystem, and yet it does. Crab-eater seals are not a species of animal that 
most of us have heard of, but they may actually be the second most numerous large species of 
animal on Earth, after humans. As many as fifteen million of them may live on the pack ice 
around Antarctica. There are also perhaps two million Weddel seals, at least half a million 
emperor penguins, and maybe as many as four million Adélie penguins. The food chain is 
thus hopelessly top heavy, but somehow it works. Remarkably no one knows how. 

    All this is a very roundabout way of making the point that we know very little about Earth’s 
biggest system. But then, as we shall see in the pages remaining to us, once you start talking 
about life, there is a great deal we don’t know, not least how it got going in the first place. 



19    THE RISE OF LIFE 

 

 

 

IN 1953, STANLEY Miller, a graduate student at the University of Chicago, took two 
flasks—one containing a little water to represent a primeval ocean, the other holding a 
mixture of methane, ammonia, and hydrogen sulphide gases to represent Earth’s early 
atmosphere—connected them with rubber tubes, and introduced some electrical sparks as a 
stand-in for lightning. After a few days, the water in the flasks had turned green and yellow in 
a hearty broth of amino acids, fatty acids, sugars, and other organic compounds. “If God 
didn’t do it this way,” observed Miller’s delighted supervisor, the Nobel laureate Harold 
Urey, “He missed a good bet.” 

    Press reports of the time made it sound as if about all that was needed now was for 
somebody to give the whole a good shake and life would crawl out. As time has shown, it 
wasn’t nearly so simple. Despite half a century of further study, we are no nearer to 
synthesizing life today than we were in 1953 and much further away from thinking we can. 
Scientists are now pretty certain that the early atmosphere was nothing like as primed for 
development as Miller and Urey’s gaseous stew, but rather was a much less reactive blend of 
nitrogen and carbon dioxide. Repeating Miller’s experiments with these more challenging 
inputs has so far produced only one fairly primitive amino acid. At all events, creating amino 
acids is not really the problem. The problem is proteins. 

    Proteins are what you get when you string amino acids together, and we need a lot of them. 
No one really knows, but there may be as many as a million types of protein in the human 
body, and each one is a little miracle. By all the laws of probability proteins shouldn’t exist. 
To make a protein you need to assemble amino acids (which I am obliged by long tradition to 
refer to here as “the building blocks of life”) in a particular order, in much the same way that 
you assemble letters in a particular order to spell a word. The problem is that words in the 
amino acid alphabet are often exceedingly long. To spell collagen, the name of a common 
type of protein, you need to arrange eight letters in the right order. But to make collagen, you 
need to arrange 1,055 amino acids in precisely the right sequence. But—and here’s an 
obvious but crucial point—you don’t make it. It makes itself, spontaneously, without 
direction, and this is where the unlikelihoods come in. 

    The chances of a 1,055-sequence molecule like collagen spontaneously self-assembling are, 
frankly, nil. It just isn’t going to happen. To grasp what a long shot its existence is, visualize a 
standard Las Vegas slot machine but broadened greatly—to about ninety feet, to be precise—
to accommodate 1,055 spinning wheels instead of the usual three or four, and with twenty 
symbols on each wheel (one for each common amino acid).1 How long would you have to 
pull the handle before all 1,055 symbols came up in the right order? Effectively forever. Even 
if you reduced the number of spinning wheels to two hundred, which is actually a more 
typical number of amino acids for a protein, the odds against all two hundred coming up in a 
                                                 
1 There are actually twenty-two naturally occurring amino acids known on Earth, and more may await discovery, 
but only twenty of them are necessary to produce us and most other living things. The twenty-second, called 
pyrrolysine, was discovered in 2002 by researchers at Ohio State University and is found only in a single type of 
archaean (a basic form of life that we will discuss a little further on in the story) called Methanosarcina barkeri. 



prescribed sequence are 1 in 10260(that is a 1 followed by 260 zeroes). That in itself is a larger 
number than all the atoms in the universe. 

    Proteins, in short, are complex entities. Hemoglobin is only 146 amino acids long, a runt by 
protein standards, yet even it offers 10190possible amino acid combinations, which is why it 
took the Cambridge University chemist Max Perutz twenty-three years—a career, more or 
less—to unravel it. For random events to produce even a single protein would seem a 
stunning improbability—like a whirlwind spinning through a junkyard and leaving behind a 
fully assembled jumbo jet, in the colorful simile of the astronomer Fred Hoyle. 

    Yet we are talking about several hundred thousand types of protein, perhaps a million, each 
unique and each, as far as we know, vital to the maintenance of a sound and happy you. And 
it goes on from there. A protein to be of use must not only assemble amino acids in the right 
sequence, but then must engage in a kind of chemical origami and fold itself into a very 
specific shape. Even having achieved this structural complexity, a protein is no good to you if 
it can’t reproduce itself, and proteins can’t. For this you need DNA. DNA is a whiz at 
replicating—it can make a copy of itself in seconds—but can do virtually nothing else. So we 
have a paradoxical situation. Proteins can’t exist without DNA, and DNA has no purpose 
without proteins. Are we to assume then that they arose simultaneously with the purpose of 
supporting each other? If so: wow. 

    And there is more still. DNA, proteins, and the other components of life couldn’t prosper 
without some sort of membrane to contain them. No atom or molecule has ever achieved life 
independently. Pluck any atom from your body, and it is no more alive than is a grain of sand. 
It is only when they come together within the nurturing refuge of a cell that these diverse 
materials can take part in the amazing dance that we call life. Without the cell, they are 
nothing more than interesting chemicals. But without the chemicals, the cell has no purpose. 
As the physicist Paul Davies puts it, “If everything needs everything else, how did the 
community of molecules ever arise in the first place?” It is rather as if all the ingredients in 
your kitchen somehow got together and baked themselves into a cake—but a cake that could 
moreover divide when necessary to produce more cakes. It is little wonder that we call it the 
miracle of life. It is also little wonder that we have barely begun to understand it. 

  

    So what accounts for all this wondrous complexity? Well, one possibility is that perhaps it 
isn’t quite—not quite—so wondrous as at first it seems. Take those amazingly improbable 
proteins. The wonder we see in their assembly comes in assuming that they arrived on the 
scene fully formed. But what if the protein chains didn’t assemble all at once? What if, in the 
great slot machine of creation, some of the wheels could be held, as a gambler might hold a 
number of promising cherries? What if, in other words, proteins didn’t suddenly burst into 
being, but evolved . 

    Imagine if you took all the components that make up a human being—carbon, hydrogen, 
oxygen, and so on—and put them in a container with some water, gave it a vigorous stir, and 
out stepped a completed person. That would be amazing. Well, that’s essentially what Hoyle 
and others (including many ardent creationists) argue when they suggest that proteins 
spontaneously formed all at once. They didn’t—they can’t have. As Richard Dawkins argues 
in The Blind Watchmaker, there must have been some kind of cumulative selection process 
that allowed amino acids to assemble in chunks. Perhaps two or three amino acids linked up 



for some simple purpose and then after a time bumped into some other similar small cluster 
and in so doing “discovered” some additional improvement. 

    Chemical reactions of the sort associated with life are actually something of a 
commonplace. It may be beyond us to cook them up in a lab, à la Stanley Miller and Harold 
Urey, but the universe does it readily enough. Lots of molecules in nature get together to form 
long chains called polymers. Sugars constantly assemble to form starches. Crystals can do a 
number of lifelike things—replicate, respond to environmental stimuli, take on a patterned 
complexity. They’ve never achieved life itself, of course, but they demonstrate repeatedly that 
complexity is a natural, spontaneous, entirely commonplace event. There may or may not be a 
great deal of life in the universe at large, but there is no shortage of ordered self-assembly, in 
everything from the transfixing symmetry of snowflakes to the comely rings of Saturn. 

    So powerful is this natural impulse to assemble that many scientists now believe that life 
may be more inevitable than we think—that it is, in the words of the Belgian biochemist and 
Nobel laureate Christian de Duve, “an obligatory manifestation of matter, bound to arise 
wherever conditions are appropriate.” De Duve thought it likely that such conditions would be 
encountered perhaps a million times in every galaxy. 

    Certainly there is nothing terribly exotic in the chemicals that animate us. If you wished to 
create another living object, whether a goldfish or a head of lettuce or a human being, you 
would need really only four principal elements, carbon, hydrogen, oxygen, and nitrogen, plus 
small amounts of a few others, principally sulfur, phosphorus, calcium, and iron. Put these 
together in three dozen or so combinations to form some sugars, acids, and other basic 
compounds and you can build anything that lives. As Dawkins notes: “There is nothing 
special about the substances from which living things are made. Living things are collections 
of molecules, like everything else.” 

    The bottom line is that life is amazing and gratifying, perhaps even miraculous, but hardly 
impossible—as we repeatedly attest with our own modest existences. To be sure, many of the 
details of life’s beginnings remain pretty imponderable. Every scenario you have ever read 
concerning the conditions necessary for life involves water—from the “warm little pond” 
where Darwin supposed life began to the bubbling sea vents that are now the most popular 
candidates for life’s beginnings—but all this overlooks the fact that to turn monomers into 
polymers (which is to say, to begin to create proteins) involves what is known to biology as 
“dehydration linkages.” As one leading biology text puts it, with perhaps just a tiny hint of 
discomfort, “Researchers agree that such reactions would not have been energetically 
favorable in the primitive sea, or indeed in any aqueous medium, because of the mass action 
law.” It is a little like putting sugar in a glass of water and having it become a cube. It 
shouldn’t happen, but somehow in nature it does. The actual chemistry of all this is a little 
arcane for our purposes here, but it is enough to know that if you make monomers wet they 
don’t turn into polymers—except when creating life on Earth. How and why it happens then 
and not otherwise is one of biology’s great unanswered questions. 

    One of the biggest surprises in the earth sciences in recent decades was the discovery of 
just how early in Earth’s history life arose. Well into the 1950s, it was thought that life was 
less than 600 million years old. By the 1970s, a few adventurous souls felt that maybe it went 
back 2.5 billion years. But the present date of 3.85 billion years is stunningly early. Earth’s 
surface didn’t become solid until about 3.9 billion years ago. 



    “We can only infer from this rapidity that it is not ‘difficult’ for life of bacterial grade to 
evolve on planets with appropriate conditions,” Stephen Jay Gould observed in the New York 
Times in 1996. Or as he put it elsewhere, it is hard to avoid the conclusion that “life, arising as 
soon as it could, was chemically destined to be.” 

    Life emerged so swiftly, in fact, that some authorities think it must have had help—perhaps 
a good deal of help. The idea that earthly life might have arrived from space has a surprisingly 
long and even occasionally distinguished history. The great Lord Kelvin himself raised the 
possibility as long ago as 1871 at a meeting of the British Association for the Advancement of 
Science when he suggested that “the germs of life might have been brought to the earth by 
some meteorite.” But it remained little more than a fringe notion until one Sunday in 
September 1969 when tens of thousands of Australians were startled by a series of sonic 
booms and the sight of a fireball streaking from east to west across the sky. The fireball made 
a strange crackling sound as it passed and left behind a smell that some likened to methylated 
spirits and others described as just awful. 

    The fireball exploded above Murchison, a town of six hundred people in the Goulburn 
Valley north of Melbourne, and came raining down in chunks, some weighing up to twelve 
pounds. Fortunately, no one was hurt. The meteorite was of a rare type known as a 
carbonaceous chondrite, and the townspeople helpfully collected and brought in some two 
hundred pounds of it. The timing could hardly have been better. Less than two months earlier, 
the Apollo 11 astronauts had returned to Earth with a bag full of lunar rocks, so labs 
throughout the world were geared up—indeed clamoring—for rocks of extraterrestrial origin. 

    The Murchison meteorite was found to be 4.5 billion years old, and it was studded with 
amino acids—seventy-four types in all, eight of which are involved in the formation of earthly 
proteins. In late 2001, more than thirty years after it crashed, a team at the Ames Research 
Center in California announced that the Murchison rock also contained complex strings of 
sugars called polyols, which had not been found off the Earth before. 

    A few other carbonaceous chondrites have strayed into Earth’s path since—one that landed 
near Tagish Lake in Canada’s Yukon in January 2000 was seen over large parts of North 
America—and they have likewise confirmed that the universe is actually rich in organic 
compounds. Halley’s comet, it is now thought, is about 25 percent organic molecules. Get 
enough of those crashing into a suitable place—Earth, for instance—and you have the basic 
elements you need for life. 

    There are two problems with notions of panspermia, as extraterrestrial theories are known. 
The first is that it doesn’t answer any questions about how life arose, but merely moves 
responsibility for it elsewhere. The other is that panspermia sometimes excites even the most 
respectable adherents to levels of speculation that can be safely called imprudent. Francis 
Crick, codiscoverer of the structure of DNA, and his colleague Leslie Orgel have suggested 
that Earth was “deliberately seeded with life by intelligent aliens,” an idea that Gribbin calls 
“at the very fringe of scientific respectability”—or, put another way, a notion that would be 
considered wildly lunatic if not voiced by a Nobel laureate. Fred Hoyle and his colleague 
Chandra Wickramasinghe further eroded enthusiasm for panspermia by suggesting that outer 
space brought us not only life but also many diseases such as flu and bubonic plague, ideas 
that were easily disproved by biochemists. Hoyle—and it seems necessary to insert a 
reminder here that he was one of the great scientific minds of the twentieth century—also 
once suggested, as mentioned earlier, that our noses evolved with the nostrils underneath as a 
way of keeping cosmic pathogens from falling into them as they drifted down from space. 



    Whatever prompted life to begin, it happened just once. That is the most extraordinary fact 
in biology, perhaps the most extraordinary fact we know. Everything that has ever lived, plant 
or animal, dates its beginnings from the same primordial twitch. At some point in an 
unimaginably distant past some little bag of chemicals fidgeted to life. It absorbed some 
nutrients, gently pulsed, had a brief existence. This much may have happened before, perhaps 
many times. But this ancestral packet did something additional and extraordinary: it cleaved 
itself and produced an heir. A tiny bundle of genetic material passed from one living entity to 
another, and has never stopped moving since. It was the moment of creation for us all. 
Biologists sometimes call it the Big Birth. 

    “Wherever you go in the world, whatever animal, plant, bug, or blob you look at, if it is 
alive, it will use the same dictionary and know the same code. All life is one,” says Matt 
Ridley. We are all the result of a single genetic trick handed down from generation to 
generation nearly four billion years, to such an extent that you can take a fragment of human 
genetic instruction, patch it into a faulty yeast cell, and the yeast cell will put it to work as if it 
were its own. In a very real sense, it is its own. 

  

    The dawn of life—or something very like it—sits on a shelf in the office of a friendly 
isotope geochemist named Victoria Bennett in the Earth Sciences building of the Australian 
National University in Canberra. An American, Ms. Bennett came to the ANU from 
California on a two-year contract in 1989 and has been there ever since. When I visited her, in 
late 2001, she handed me a modestly hefty hunk of rock composed of thin alternating stripes 
of white quartz and a gray-green material called clinopyroxene. The rock came from Akilia 
Island in Greenland, where unusually ancient rocks were found in 1997. The rocks are 3.85 
billion years old and represent the oldest marine sediments ever found. 

    “We can’t be certain that what you are holding once contained living organisms because 
you’d have to pulverize it to find out,” Bennett told me. “But it comes from the same deposit 
where the oldest life was excavated, so it probably had life in it.” Nor would you find actual 
fossilized microbes, however carefully you searched. Any simple organisms, alas, would have 
been baked away by the processes that turned ocean mud to stone. Instead what we would see 
if we crunched up the rock and examined it microscopically would be the chemical residues 
that the organisms left behind—carbon isotopes and a type of phosphate called apatite, which 
together provide strong evidence that the rock once contained colonies of living things. “We 
can only guess what the organism might have looked like,” Bennett said. “It was probably 
about as basic as life can get—but it was life nonetheless. It lived. It propagated.” 

    And eventually it led to us. 

    If you are into very old rocks, and Bennett indubitably is, the ANU has long been a prime 
place to be. This is largely thanks to the ingenuity of a man named Bill Compston, who is 
now retired but in the 1970s built the world’s first Sensitive High Resolution Ion Micro 
Probe—or SHRIMP, as it is more affectionately known from its initial letters. This is a 
machine that measures the decay rate of uranium in tiny minerals called zircons. Zircons 
appear in most rocks apart from basalts and are extremely durable, surviving every natural 
process but subduction. Most of the Earth’s crust has been slipped back into the oven at some 
point, but just occasionally—in Western Australia and Greenland, for example—geologists 
have found outcrops of rocks that have remained always at the surface. Compston’s machine 
allowed such rocks to be dated with unparalleled precision. The prototype SHRIMP was built 



and machined in the Earth Science department’s own workshops, and looked like something 
that had been built from spare parts on a budget, but it worked great. On its first formal test, in 
1982, it dated the oldest thing ever found—a 4.3-billion-year-old rock from Western 
Australia. 

    “It caused quite a stir at the time,” Bennett told me, “to find something so important so 
quickly with brand-new technology.” 

    She took me down the hall to see the current model, SHRIMP II. It was a big heavy piece 
of stainless-steel apparatus, perhaps twelve feet long and five feet high, and as solidly built as 
a deep-sea probe. At a console in front of it, keeping an eye on ever-changing strings of 
figures on a screen, was a man named Bob from Canterbury University in New Zealand. He 
had been there since 4 A.M., he told me. SHRIMP II runs twenty-four hours a day; there’s that 
many rocks to date. It was just after 9A.M. and Bob had the machine till noon. Ask a pair of 
geochemists how something like this works, and they will start talking about isotopic 
abundances and ionization levels with an enthusiasm that is more endearing than fathomable. 
The upshot of it, however, was that the machine, by bombarding a sample of rock with 
streams of charged atoms, is able to detect subtle differences in the amounts of lead and 
uranium in the zircon samples, by which means the age of rocks can be accurately adduced. 
Bob told me that it takes about seventeen minutes to read one zircon and it is necessary to 
read dozens from each rock to make the data reliable. In practice, the process seemed to 
involve about the same level of scattered activity, and about as much stimulation, as a trip to a 
laundromat. Bob seemed very happy, however; but then people from New Zealand very 
generally do. 

    The Earth Sciences compound was an odd combination of things—part offices, part labs, 
part machine shed. “We used to build everything here,” Bennett said. “We even had our own 
glassblower, but he’s retired. But we still have two full-time rock crushers.” She caught my 
look of mild surprise. “We get through a lot of rocks. And they have to be very carefully 
prepared. You have to make sure there is no contamination from previous samples—no dust 
or anything. It’s quite a meticulous process.” She showed me the rock-crushing machines, 
which were indeed pristine, though the rock crushers had apparently gone for coffee. Beside 
the machines were large boxes containing rocks of all shapes and sizes. They do indeed get 
through a lot of rocks at the ANU. 

    Back in Bennett’s office after our tour, I noticed hanging on her wall a poster giving an 
artist’s colorfully imaginative interpretation of Earth as it might have looked 3.5 billion years 
ago, just when life was getting going, in the ancient period known to earth science as the 
Archaean. The poster showed an alien landscape of huge, very active volcanoes, and a 
steamy, copper-colored sea beneath a harsh red sky. Stromatolites, a kind of bacterial rock, 
filled the shallows in the foreground. It didn’t look like a very promising place to create and 
nurture life. I asked her if the painting was accurate. 

    “Well, one school of thought says it was actually cool then because the sun was much 
weaker.” (I later learned that biologists, when they are feeling jocose, refer to this as the 
“Chinese restaurant problem”—because we had a dim sun.) “Without an atmosphere 
ultraviolet rays from the sun, even from a weak sun, would have tended to break apart any 
incipient bonds made by molecules. And yet right there”—she tapped the stromatolites—“you 
have organisms almost at the surface. It’s a puzzle.” 

    “So we don’t know what the world was like back then?” 



    “Mmmm,” she agreed thoughtfully. 

    “Either way it doesn’t seem very conducive to life.” 

    She nodded amiably. “But there must have been something that suited life. Otherwise we 
wouldn’t be here.” 

  

    It certainly wouldn’t have suited us. If you were to step from a time machine into that 
ancient Archaean world, you would very swiftly scamper back inside, for there was no more 
oxygen to breathe on Earth back then than there is on Mars today. It was also full of noxious 
vapors from hydrochloric and sulfuric acids powerful enough to eat through clothing and 
blister skin. Nor would it have provided the clean and glowing vistas depicted in the poster in 
Victoria Bennett’s office. The chemical stew that was the atmosphere then would have 
allowed little sunlight to reach the Earth’s surface. What little you could see would be 
illumined only briefly by bright and frequent lightning flashes. In short, it was Earth, but an 
Earth we wouldn’t recognize as our own. 

    Anniversaries were few and far between in the Archaean world. For two billion years 
bacterial organisms were the only forms of life. They lived, they reproduced, they swarmed, 
but they didn’t show any particular inclination to move on to another, more challenging level 
of existence. At some point in the first billion years of life, cyanobacteria, or blue-green algae, 
learned to tap into a freely available resource—the hydrogen that exists in spectacular 
abundance in water. They absorbed water molecules, supped on the hydrogen, and released 
the oxygen as waste, and in so doing invented photosynthesis. As Margulis and Sagan note, 
photosynthesis is “undoubtedly the most important single metabolic innovation in the history 
of life on the planet”—and it was invented not by plants but by bacteria. 

    As cyanobacteria proliferated the world began to fill with O2to the consternation of those 
organisms that found it poisonous—which in those days was all of them. In an anaerobic (or a 
non-oxygen-using) world, oxygen is extremely poisonous. Our white cells actually use 
oxygen to kill invading bacteria. That oxygen is fundamentally toxic often comes as a surprise 
to those of us who find it so convivial to our well-being, but that is only because we have 
evolved to exploit it. To other things it is a terror. It is what turns butter rancid and makes iron 
rust. Even we can tolerate it only up to a point. The oxygen level in our cells is only about a 
tenth the level found in the atmosphere. 

    The new oxygen-using organisms had two advantages. Oxygen was a more efficient way to 
produce energy, and it vanquished competitor organisms. Some retreated into the oozy, 
anaerobic world of bogs and lake bottoms. Others did likewise but then later (much later) 
migrated to the digestive tracts of beings like you and me. Quite a number of these primeval 
entities are alive inside your body right now, helping to digest your food, but abhorring even 
the tiniest hint of O2. Untold numbers of others failed to adapt and died. 

    The cyanobacteria were a runaway success. At first, the extra oxygen they produced didn’t 
accumulate in the atmosphere, but combined with iron to form ferric oxides, which sank to the 
bottom of primitive seas. For millions of years, the world literally rusted—a phenomenon 
vividly recorded in the banded iron deposits that provide so much of the world’s iron ore 
today. For many tens of millions of years not a great deal more than this happened. If you 
went back to that early Proterozoic world you wouldn’t find many signs of promise for 



Earth’s future life. Perhaps here and there in sheltered pools you’d encounter a film of living 
scum or a coating of glossy greens and browns on shoreline rocks, but otherwise life remained 
invisible. 

    But about 3.5 billion years ago something more emphatic became apparent. Wherever the 
seas were shallow, visible structures began to appear. As they went through their chemical 
routines, the cyanobacteria became very slightly tacky, and that tackiness trapped 
microparticles of dust and sand, which became bound together to form slightly weird but solid 
structures—the stromatolites that were featured in the shallows of the poster on Victoria 
Bennett’s office wall. Stromatolites came in various shapes and sizes. Sometimes they looked 
like enormous cauliflowers, sometimes like fluffy mattresses (stromatolite comes from the 
Greek for “mattress”), sometimes they came in the form of columns, rising tens of meters 
above the surface of the water—sometimes as high as a hundred meters. In all their 
manifestations, they were a kind of living rock, and they represented the world’s first 
cooperative venture, with some varieties of primitive organism living just at the surface and 
others living just underneath, each taking advantage of conditions created by the other. The 
world had its first ecosystem. 

    For many years, scientists knew about stromatolites from fossil formations, but in 1961 
they got a real surprise with the discovery of a community of living stromatolites at Shark 
Bay on the remote northwest coast of Australia. This was most unexpected—so unexpected, 
in fact, that it was some years before scientists realized quite what they had found. Today, 
however, Shark Bay is a tourist attraction—or at least as much of a tourist attraction as a place 
hundreds of miles from anywhere much and dozens of miles from anywhere at all can ever be. 
Boardwalks have been built out into the bay so that visitors can stroll over the water to get a 
good look at the stromatolites, quietly respiring just beneath the surface. They are lusterless 
and gray and look, as I recorded in an earlier book, like very large cow-pats. But it is a 
curiously giddying moment to find yourself staring at living remnants of Earth as it was 3.5 
billion years ago. As Richard Fortey has put it: “This is truly time traveling, and if the world 
were attuned to its real wonders this sight would be as well-known as the pyramids of Giza.” 
Although you’d never guess it, these dull rocks swarm with life, with an estimated (well, 
obviously estimated) three billion individual organisms on every square yard of rock. 
Sometimes when you look carefully you can see tiny strings of bubbles rising to the surface as 
they give up their oxygen. In two billion years such tiny exertions raised the level of oxygen 
in Earth’s atmosphere to 20 percent, preparing the way for the next, more complex chapter in 
life’s history. 

    It has been suggested that the cyanobacteria at Shark Bay are perhaps the slowest-evolving 
organisms on Earth, and certainly now they are among the rarest. Having prepared the way for 
more complex life forms, they were then grazed out of existence nearly everywhere by the 
very organisms whose existence they had made possible. (They exist at Shark Bay because 
the waters are too saline for the creatures that would normally feast on them.) 

    One reason life took so long to grow complex was that the world had to wait until the 
simpler organisms had oxygenated the atmosphere sufficiently. “Animals could not summon 
up the energy to work,” as Fortey has put it. It took about two billion years, roughly 40 
percent of Earth’s history, for oxygen levels to reach more or less modern levels of 
concentration in the atmosphere. But once the stage was set, and apparently quite suddenly, an 
entirely new type of cell arose—one with a nucleus and other little bodies collectively called 
organelles (from a Greek word meaning “little tools”). The process is thought to have started 
when some blundering or adventuresome bacterium either invaded or was captured by some 



other bacterium and it turned out that this suited them both. The captive bacterium became, it 
is thought, a mitochondrion. This mitochondrial invasion (or endosymbiotic event, as 
biologists like to term it) made complex life possible. (In plants a similar invasion produced 
chloroplasts, which enable plants to photosynthesize.) 

    Mitochondria manipulate oxygen in a way that liberates energy from foodstuffs. Without 
this niftily facilitating trick, life on Earth today would be nothing more than a sludge of 
simple microbes. Mitochondria are very tiny—you could pack a billion into the space 
occupied by a grain of sand—but also very hungry. Almost every nutriment you absorb goes 
to feeding them. 

    We couldn’t live for two minutes without them, yet even after a billion years mitochondria 
behave as if they think things might not work out between us. They maintain their own DNA. 
They reproduce at a different time from their host cell. They look like bacteria, divide like 
bacteria, and sometimes respond to antibiotics in the way bacteria do. In short, they keep their 
bags packed. They don’t even speak the same genetic language as the cell in which they live. 
It is like having a stranger in your house, but one who has been there for a billion years. 

    The new type of cell is known as a eukaryote (meaning “truly nucleated”), as contrasted 
with the old type, which is known as a prokaryote (“prenucleated”), and it seems to have 
arrived suddenly in the fossil record. The oldest eukaryotes yet known, called Grypania, were 
discovered in iron sediments in Michigan in 1992. Such fossils have been found just once, and 
then no more are known for 500 million years. 

    Compared with the new eukaryotes the old prokaryotes were little more than “bags of 
chemicals,” in the words of the geologist Stephen Drury. Eukaryotes were bigger—eventually 
as much as ten thousand times bigger—than their simpler cousins, and carried as much as a 
thousand times more DNA. Gradually a system evolved in which life was dominated by two 
types of form—organisms that expel oxygen (like plants) and those that take it in (you and 
me). 

    Single-celled eukaryotes were once called protozoa (“pre-animals”), but that term is 
increasingly disdained. Today the common term for them is protists . Compared with the 
bacteria that had gone before, these new protists were wonders of design and sophistication. 
The simple amoeba, just one cell big and without any ambitions but to exist, contains 400 
million bits of genetic information in its DNA—enough, as Carl Sagan noted, to fill eighty 
books of five hundred pages. 

    Eventually the eukaryotes learned an even more singular trick. It took a long time—a 
billion years or so—but it was a good one when they mastered it. They learned to form 
together into complex multicellular beings. Thanks to this innovation, big, complicated, 
visible entities like us were possible. Planet Earth was ready to move on to its next ambitious 
phase. 

    But before we get too excited about that, it is worth remembering that the world, as we are 
about to see, still belongs to the very small. 



20    SMALL WORLD 

 

 

 

 

IT’S PROBABLY NOT a good idea to take too personal an interest in your microbes. Louis 
Pasteur, the great French chemist and bacteriologist, became so preoccupied with them that he 
took to peering critically at every dish placed before him with a magnifying glass, a habit that 
presumably did not win him many repeat invitations to dinner. 

    In fact, there is no point in trying to hide from your bacteria, for they are on and around you 
always, in numbers you can’t conceive. If you are in good health and averagely diligent about 
hygiene, you will have a herd of about one trillion bacteria grazing on your fleshy plains—
about a hundred thousand of them on every square centimeter of skin. They are there to dine 
off the ten billion or so flakes of skin you shed every day, plus all the tasty oils and fortifying 
minerals that seep out from every pore and fissure. You are for them the ultimate food court, 
with the convenience of warmth and constant mobility thrown in. By way of thanks, they give 
you B.O. 

    And those are just the bacteria that inhabit your skin. There are trillions more tucked away 
in your gut and nasal passages, clinging to your hair and eyelashes, swimming over the 
surface of your eyes, drilling through the enamel of your teeth. Your digestive system alone is 
host to more than a hundred trillion microbes, of at least four hundred types. Some deal with 
sugars, some with starches, some attack other bacteria. A surprising number, like the 
ubiquitous intestinal spirochetes, have no detectable function at all. They just seem to like to 
be with you. Every human body consists of about 10 quadrillion cells, but about 100 
quadrillion bacterial cells. They are, in short, a big part of us. From the bacteria’s point of 
view, of course, we are a rather small part of them. 

    Because we humans are big and clever enough to produce and utilize antibiotics and 
disinfectants, it is easy to convince ourselves that we have banished bacteria to the fringes of 
existence. Don’t you believe it. Bacteria may not build cities or have interesting social lives, 
but they will be here when the Sun explodes. This is their planet, and we are on it only 
because they allow us to be. 

    Bacteria, never forget, got along for billions of years without us. We couldn’t survive a day 
without them. They process our wastes and make them usable again; without their diligent 
munching nothing would rot. They purify our water and keep our soils productive. Bacteria 
synthesize vitamins in our gut, convert the things we eat into useful sugars and 
polysaccharides, and go to war on alien microbes that slip down our gullet. 

    We depend totally on bacteria to pluck nitrogen from the air and convert it into useful 
nucleotides and amino acids for us. It is a prodigious and gratifying feat. As Margulis and 
Sagan note, to do the same thing industrially (as when making fertilizers) manufacturers must 
heat the source materials to 500 degrees centigrade and squeeze them to three hundred times 
normal pressures. Bacteria do it all the time without fuss, and thank goodness, for no larger 



organism could survive without the nitrogen they pass on. Above all, microbes continue to 
provide us with the air we breathe and to keep the atmosphere stable. Microbes, including the 
modern versions of cyanobacteria, supply the greater part of the planet’s breathable oxygen. 
Algae and other tiny organisms bubbling away in the sea blow out about 150 billion kilos of 
the stuff every year. 

    And they are amazingly prolific. The more frantic among them can yield a new generation 
in less than ten minutes; Clostridium perfringens, the disagreeable little organism that causes 
gangrene, can reproduce in nine minutes. At such a rate, a single bacterium could theoretically 
produce more offspring in two days than there are protons in the universe. “Given an adequate 
supply of nutrients, a single bacterial cell can generate 280,000 billion individuals in a single 
day,” according to the Belgian biochemist and Nobel laureate Christian de Duve. In the same 
period, a human cell can just about manage a single division. 

    About once every million divisions, they produce a mutant. Usually this is bad luck for the 
mutant—change is always risky for an organism—but just occasionally the new bacterium is 
endowed with some accidental advantage, such as the ability to elude or shrug off an attack of 
antibiotics. With this ability to evolve rapidly goes another, even scarier advantage. Bacteria 
share information. Any bacterium can take pieces of genetic coding from any other. 
Essentially, as Margulis and Sagan put it, all bacteria swim in a single gene pool. Any 
adaptive change that occurs in one area of the bacterial universe can spread to any other. It’s 
rather as if a human could go to an insect to get the necessary genetic coding to sprout wings 
or walk on ceilings. It means that from a genetic point of view bacteria have become a single 
superorganism—tiny, dispersed, but invincible. 

    They will live and thrive on almost anything you spill, dribble, or shake loose. Just give 
them a little moisture—as when you run a damp cloth over a counter—and they will bloom as 
if created from nothing. They will eat wood, the glue in wallpaper, the metals in hardened 
paint. Scientists in Australia found microbes known as Thiobacillus concretivorans that lived 
in—indeed, could not live without—concentrations of sulfuric acid strong enough to dissolve 
metal. A species called Micrococcus radiophilus was found living happily in the waste tanks 
of nuclear reactors, gorging itself on plutonium and whatever else was there. Some bacteria 
break down chemical materials from which, as far as we can tell, they gain no benefit at all. 

    They have been found living in boiling mud pots and lakes of caustic soda, deep inside 
rocks, at the bottom of the sea, in hidden pools of icy water in the McMurdo Dry Valleys of 
Antarctica, and seven miles down in the Pacific Ocean where pressures are more than a 
thousand times greater than at the surface, or equivalent to being squashed beneath fifty 
jumbo jets. Some of them seem to be practically indestructible. Deinococcus radiodurans is, 
according to theEconomist , “almost immune to radioactivity.” Blast its DNA with radiation, 
and the pieces immediately reform “like the scuttling limbs of an undead creature from a 
horror movie.” 

    Perhaps the most extraordinary survival yet found was that of a Streptococcus bacterium 
that was recovered from the sealed lens of a camera that had stood on the Moon for two years. 
In short, there are few environments in which bacteria aren’t prepared to live. “They are 
finding now that when they push probes into ocean vents so hot that the probes actually start 
to melt, there are bacteria even there,” Victoria Bennett told me. 

    In the 1920s two scientists at the University of Chicago, Edson Bastin and Frank Greer, 
announced that they had isolated from oil wells strains of bacteria that had been living at 



depths of two thousand feet. The notion was dismissed as fundamentally preposterous—there 
was nothing to live on at two thousand feet—and for fifty years it was assumed that their 
samples had been contaminated with surface microbes. We now know that there are a lot of 
microbes living deep within the Earth, many of which have nothing at all to do with the 
organic world. They eat rocks or, rather, the stuff that’s in rocks—iron, sulfur, manganese, 
and so on. And they breathe odd things too—iron, chromium, cobalt, even uranium. Such 
processes may be instrumental in concentrating gold, copper, and other precious metals, and 
possibly deposits of oil and natural gas. It has even been suggested that their tireless nibblings 
created the Earth’s crust. 

    Some scientists now think that there could be as much as 100 trillion tons of bacteria living 
beneath our feet in what are known as subsurface lithoautotrophic microbial ecosystems—
SLiME for short. Thomas Gold of Cornell has estimated that if you took all the bacteria out of 
the Earth’s interior and dumped it on the surface, it would cover the planet to a depth of five 
feet. If the estimates are correct, there could be more life under the Earth than on top of it. 

    At depth microbes shrink in size and become extremely sluggish. The liveliest of them may 
divide no more than once a century, some no more than perhaps once in five hundred years. 
As the Economist has put it: “The key to long life, it seems, is not to do too much.” When 
things are really tough, bacteria are prepared to shut down all systems and wait for better 
times. In 1997 scientists successfully activated some anthrax spores that had lain dormant for 
eighty years in a museum display in Trondheim, Norway. Other microorganisms have leapt 
back to life after being released from a 118-year-old can of meat and a 166-year-old bottle of 
beer. In 1996, scientists at the Russian Academy of Science claimed to have revived bacteria 
frozen in Siberian permafrost for three million years. But the record claim for durability so far 
is one made by Russell Vreeland and colleagues at West Chester University in Pennsylvania 
in 2000, when they announced that they had resuscitated 250-million-year-old bacteria called 
Bacillus permians that had been trapped in salt deposits two thousand feet underground in 
Carlsbad, New Mexico. If so, this microbe is older than the continents. 

    The report met with some understandable dubiousness. Many biochemists maintained that 
over such a span the microbe’s components would have become uselessly degraded unless the 
bacterium roused itself from time to time. However, if the bacterium did stir occasionally 
there was no plausible internal source of energy that could have lasted so long. The more 
doubtful scientists suggested that the sample may have been contaminated, if not during its 
retrieval then perhaps while still buried. In 2001, a team from Tel Aviv University argued that 
B. permians were almost identical to a strain of modern bacteria, Bacillus marismortui, found 
in the Dead Sea. Only two of its genetic sequences differed, and then only slightly. 

    “Are we to believe,” the Israeli researchers wrote, “that in 250 million years B. permians 
has accumulated the same amount of genetic differences that could be achieved in just 3–7 
days in the laboratory?” In reply, Vreeland suggested that “bacteria evolve faster in the lab 
than they do in the wild.” 

    Maybe. 

  

    It is a remarkable fact that well into the space age, most school textbooks divided the world 
of the living into just two categories—plant and animal. Microorganisms hardly featured. 
Amoebas and similar single-celled organisms were treated as proto-animals and algae as 



proto-plants. Bacteria were usually lumped in with plants, too, even though everyone knew 
they didn’t belong there. As far back as the late nineteenth century the German naturalist 
Ernst Haeckel had suggested that bacteria deserved to be placed in a separate kingdom, which 
he called Monera, but the idea didn’t begin to catch on among biologists until the 1960s and 
then only among some of them. (I note that my trusty American Heritage desk dictionary 
from 1969 doesn’t recognize the term.) 

    Many organisms in the visible world were also poorly served by the traditional division. 
Fungi, the group that includes mushrooms, molds, mildews, yeasts, and puffballs, were nearly 
always treated as botanical objects, though in fact almost nothing about them—how they 
reproduce and respire, how they build themselves—matches anything in the plant world. 
Structurally they have more in common with animals in that they build their cells from chitin, 
a material that gives them their distinctive texture. The same substance is used to make the 
shells of insects and the claws of mammals, though it isn’t nearly so tasty in a stag beetle as in 
a Portobello mushroom. Above all, unlike all plants, fungi don’t photosynthesize, so they 
have no chlorophyll and thus are not green. Instead they grow directly on their food source, 
which can be almost anything. Fungi will eat the sulfur off a concrete wall or the decaying 
matter between your toes—two things no plant will do. Almost the only plantlike quality they 
have is that they root. 

    Even less comfortably susceptible to categorization was the peculiar group of organisms 
formally called myxomycetes but more commonly known as slime molds. The name no doubt 
has much to do with their obscurity. An appellation that sounded a little more dynamic—
“ambulant self-activating protoplasm,” say—and less like the stuff you find when you reach 
deep into a clogged drain would almost certainly have earned these extraordinary entities a 
more immediate share of the attention they deserve, for slime molds are, make no mistake, 
among the most interesting organisms in nature. When times are good, they exist as one-
celled individuals, much like amoebas. But when conditions grow tough, they crawl to a 
central gathering place and become, almost miraculously, a slug. The slug is not a thing of 
beauty and it doesn’t go terribly far—usually just from the bottom of a pile of leaf litter to the 
top, where it is in a slightly more exposed position—but for millions of years this may well 
have been the niftiest trick in the universe. 

    And it doesn’t stop there. Having hauled itself up to a more favorable locale, the slime 
mold transforms itself yet again, taking on the form of a plant. By some curious orderly 
process the cells reconfigure, like the members of a tiny marching band, to make a stalk atop 
of which forms a bulb known as a fruiting body. Inside the fruiting body are millions of 
spores that, at the appropriate moment, are released to the wind to blow away and become 
single-celled organisms that can start the process again. 

    For years slime molds were claimed as protozoa by zoologists and as fungi by mycologists, 
though most people could see they didn’t really belong anywhere. When genetic testing 
arrived, people in lab coats were surprised to find that slime molds were so distinctive and 
peculiar that they weren’t directly related to anything else in nature, and sometimes not even 
to each other. 

    In 1969, in an attempt to bring some order to the growing inadequacies of classification, an 
ecologist from Cornell University named R. H. Whittaker unveiled in the journalScience a 
proposal to divide life into five principal branches—kingdoms, as they are known—called 
Animalia, Plantae, Fungi, Protista, and Monera. Protista, was a modification of an earlier 



term, Protoctista, which had been suggested a century earlier by a Scottish biologist named 
John Hogg, and was meant to describe any organisms that were neither plant nor animal. 

    Though Whittaker’s new scheme was a great improvement, Protista remained ill defined. 
Some taxonomists reserved it for large unicellular organisms—the eukaryotes—but others 
treated it as the kind of odd sock drawer of biology, putting into it anything that didn’t fit 
anywhere else. It included (depending on which text you consulted) slime molds, amoebas, 
and even seaweed, among much else. By one calculation it contained as many as 200,000 
different species of organism all told. That’s a lot of odd socks. 

    Ironically, just as Whittaker’s five-kingdom classification was beginning to find its way 
into textbooks, a retiring academic at the University of Illinois was groping his way toward a 
discovery that would challenge everything. His name was Carl Woese (rhymes with rose), and 
since the mid-1960s—or about as early as it was possible to do so—he had been quietly 
studying genetic sequences in bacteria. In the early days, this was an exceedingly painstaking 
process. Work on a single bacterium could easily consume a year. At that time, according to 
Woese, only about 500 species of bacteria were known, which is fewer than the number of 
species you have in your mouth. Today the number is about ten times that, though that is still 
far short of the 26,900 species of algae, 70,000 of fungi, and 30,800 of amoebas and related 
organisms whose biographies fill the annals of biology. 

    It isn’t simple indifference that keeps the total low. Bacteria can be exasperatingly difficult 
to isolate and study. Only about 1 percent will grow in culture. Considering how wildly 
adaptable they are in nature, it is an odd fact that the one place they seem not to wish to live is 
a petri dish. Plop them on a bed of agar and pamper them as you will, and most will just lie 
there, declining every inducement to bloom. Any bacterium that thrives in a lab is by 
definition exceptional, and yet these were, almost exclusively, the organisms studied by 
microbiologists. It was, said Woese, “like learning about animals from visiting zoos.” 

    Genes, however, allowed Woese to approach microorganisms from another angle. As he 
worked, Woese realized that there were more fundamental divisions in the microbial world 
than anyone suspected. A lot of little organisms that looked like bacteria and behaved like 
bacteria were actually something else altogether—something that had branched off from 
bacteria a long time ago. Woese called these organisms archaebacteria, later shortened to 
archaea. 

    It has be said that the attributes that distinguish archaea from bacteria are not the sort that 
would quicken the pulse of any but a biologist. They are mostly differences in their lipids and 
an absence of something called peptidoglycan. But in practice they make a world of 
difference. Archaeans are more different from bacteria than you and I are from a crab or 
spider. Singlehandedly Woese had discovered an unsuspected division of life, so fundamental 
that it stood above the level of kingdom at the apogee of the Universal Tree of Life, as it is 
rather reverentially known. 

    In 1976, he startled the world—or at least the little bit of it that was paying attention—by 
redrawing the tree of life to incorporate not five main divisions, but twenty-three. These he 
grouped under three new principal categories—Bacteria, Archaea, and Eukarya (sometimes 
spelled Eucarya)—which he called domains. 

    Woese’s new divisions did not take the biological world by storm. Some dismissed them as 
much too heavily weighted toward the microbial. Many just ignored them. Woese, according 



to Frances Ashcroft, “felt bitterly disappointed.” But slowly his new scheme began to catch 
on among microbiologists. Botanists and zoologists were much slower to admire its virtues. 
It’s not hard to see why. On Woese’s model, the worlds of botany and zoology are relegated 
to a few twigs on the outermost branch of the Eukaryan limb. Everything else belongs to 
unicellular beings. 

    “These folks were brought up to classify in terms of gross morphological similarities and 
differences,” Woese told an interviewer in 1996. “The idea of doing so in terms of molecular 
sequence is a bit hard for many of them to swallow.” In short, if they couldn’t see a difference 
with their own eyes, they didn’t like it. And so they persisted with the traditional five-
kingdom division—an arrangement that Woese called “not very useful” in his milder 
moments and “positively misleading” much of the rest of the time. “Biology, like physics 
before it,” Woese wrote, “has moved to a level where the objects of interest and their 
interactions often cannot be perceived through direct observation.” 

    In 1998 the great and ancient Harvard zoologist Ernst Mayr (who then was in his ninety-
fourth year and at the time of my writing is nearing one hundred and still going strong) stirred 
the pot further by declaring that there should be just two prime divisions of life—“empires” 
he called them. In a paper published in the Proceedings of the National Academy of Sciences, 
Mayr said that Woese’s findings were interesting but ultimately misguided, noting that 
“Woese was not trained as a biologist and quite naturally does not have an extensive 
familiarity with the principles of classification,” which is perhaps as close as one 
distinguished scientist can come to saying of another that he doesn’t know what he is talking 
about. 

    The specifics of Mayr’s criticisms are too technical to need extensive airing here—they 
involve issues of meiotic sexuality, Hennigian cladification, and controversial interpretations 
of the genome of Methanobacterium thermoautrophicum, among rather a lot else—but 
essentially he argues that Woese’s arrangement unbalances the tree of life. The bacterial 
realm, Mayr notes, consists of no more than a few thousand species while the archaean has a 
mere 175 named specimens, with perhaps a few thousand more to be found—“but hardly 
more than that.” By contrast, the eukaryotic realm—that is, the complicated organisms with 
nucleated cells, like us—numbers already in the millions. For the sake of “the principle of 
balance,” Mayr argues for combining the simple bacterial organisms in a single category, 
Prokaryota, while placing the more complex and “highly evolved” remainder in the empire 
Eukaryota, which would stand alongside as an equal. Put another way, he argues for keeping 
things much as they were before. This division between simple cells and complex cells “is 
where the great break is in the living world.” 

    The distinction between halophilic archaeans and methanosarcina or between flavobacteria 
and gram-positive bacteria clearly will never be a matter of moment for most of us, but it is 
worth remembering that each is as different from its neighbors as animals are from plants. If 
Woese’s new arrangement teaches us anything it is that life really is various and that most of 
that variety is small, unicellular, and unfamiliar. It is a natural human impulse to think of 
evolution as a long chain of improvements, of a never-ending advance toward largeness and 
complexity—in a word, toward us. We flatter ourselves. Most of the real diversity in 
evolution has been small-scale. We large things are just flukes—an interesting side branch. Of 
the twenty-three main divisions of life, only three—plants, animals, and fungi—are large 
enough to be seen by the human eye, and even they contain species that are microscopic. 
Indeed, according to Woese, if you totaled up all the biomass of the planet—every living 



thing, plants included—microbes would account for at least 80 percent of all there is, perhaps 
more. The world belongs to the very small—and it has for a very long time. 

  

    So why, you are bound to ask at some point in your life, do microbes so often want to hurt 
us? What possible satisfaction could there be to a microbe in having us grow feverish or 
chilled, or disfigured with sores, or above all expire? A dead host, after all, is hardly going to 
provide long-term hospitality. 

    To begin with, it is worth remembering that most microorganisms are neutral or even 
beneficial to human well-being. The most rampantly infectious organism on Earth, a 
bacterium called Wolbachia, doesn’t hurt humans at all—or, come to that, any other 
vertebrates—but if you are a shrimp or worm or fruit fly, it can make you wish you had never 
been born. Altogether, only about one microbe in a thousand is a pathogen for humans, 
according to National Geographic —though, knowing what some of them can do, we could 
be forgiven for thinking that that is quite enough. Even if mostly benign, microbes are still the 
number-three killer in the Western world, and even many less lethal ones of course make us 
deeply rue their existence. 

    Making a host unwell has certain benefits for the microbe. The symptoms of an illness 
often help to spread the disease. Vomiting, sneezing, and diarrhea are excellent methods of 
getting out of one host and into position for another. The most effective strategy of all is to 
enlist the help of a mobile third party. Infectious organisms love mosquitoes because the 
mosquito’s sting delivers them directly to a bloodstream where they can get straight to work 
before the victim’s defense mechanisms can figure out what’s hit them. This is why so many 
grade-A diseases—malaria, yellow fever, dengue fever, encephalitis, and a hundred or so 
other less celebrated but often rapacious maladies—begin with a mosquito bite. It is a 
fortunate fluke for us that HIV, the AIDS agent, isn’t among them—at least not yet. Any HIV 
the mosquito sucks up on its travels is dissolved by the mosquito’s own metabolism. When 
the day comes that the virus mutates its way around this, we may be in real trouble. 

    It is a mistake, however, to consider the matter too carefully from the position of logic 
because microorganisms clearly are not calculating entities. They don’t care what they do to 
you any more than you care what distress you cause when you slaughter them by the millions 
with a soapy shower or a swipe of deodorant. The only time your continuing well-being is of 
consequence to a pathogen is when it kills you too well. If they eliminate you before they can 
move on, then they may well die out themselves. This in fact sometimes happens. History, 
Jared Diamond notes, is full of diseases that “once caused terrifying epidemics and then 
disappeared as mysteriously as they had come.” He cites the robust but mercifully transient 
English sweating sickness, which raged from 1485 to 1552, killing tens of thousands as it 
went, before burning itself out. Too much efficiency is not a good thing for any infectious 
organism. 

    A great deal of sickness arises not because of what the organism has done to you but what 
your body is trying to do to the organism. In its quest to rid the body of pathogens, the 
immune system sometimes destroys cells or damages critical tissues, so often when you are 
unwell what you are feeling is not the pathogens but your own immune responses. Anyway, 
getting sick is a sensible response to infection. Sick people retire to their beds and thus are 
less of a threat to the wider community. Resting also frees more of the body’s resources to 
attend to the infection. 



    Because there are so many things out there with the potential to hurt you, your body holds 
lots of different varieties of defensive white cells—some ten million types in all, each 
designed to identify and destroy a particular sort of invader. It would be impossibly inefficient 
to maintain ten million separate standing armies, so each variety of white cell keeps only a 
few scouts on active duty. When an infectious agent—what’s known as an antigen—invades, 
relevant scouts identify the attacker and put out a call for reinforcements of the right type. 
While your body is manufacturing these forces, you are likely to feel wretched. The onset of 
recovery begins when the troops finally swing into action. 

    White cells are merciless and will hunt down and kill every last pathogen they can find. To 
avoid extinction, attackers have evolved two elemental strategies. Either they strike quickly 
and move on to a new host, as with common infectious illnesses like flu, or they disguise 
themselves so that the white cells fail to spot them, as with HIV, the virus responsible for 
AIDS, which can sit harmlessly and unnoticed in the nuclei of cells for years before springing 
into action. 

    One of the odder aspects of infection is that microbes that normally do no harm at all 
sometimes get into the wrong parts of the body and “go kind of crazy,” in the words of Dr. 
Bryan Marsh, an infectious diseases specialist at Dartmouth–Hitchcock Medical Center in 
Lebanon, New Hamphire. “It happens all the time with car accidents when people suffer 
internal injuries. Microbes that are normally benign in the gut get into other parts of the 
body—the bloodstream, for instance—and cause terrible havoc.” 

    The scariest, most out-of-control bacterial disorder of the moment is a disease called 
necrotizing fasciitis in which bacteria essentially eat the victim from the inside out, devouring 
internal tissue and leaving behind a pulpy, noxious residue. Patients often come in with 
comparatively mild complaints—a skin rash and fever typically—but then dramatically 
deteriorate. When they are opened up it is often found that they are simply being consumed. 
The only treatment is what is known as “radical excisional surgery”—cutting out every bit of 
infected area. Seventy percent of victims die; many of the rest are left terribly disfigured. The 
source of the infection is a mundane family of bacteria called Group A Streptococcus, which 
normally do no more than cause strep throat. Very occasionally, for reasons unknown, some 
of these bacteria get through the lining of the throat and into the body proper, where they 
wreak the most devastating havoc. They are completely resistant to antibiotics. About a 
thousand cases a year occur in the United States, and no one can say that it won’t get worse. 

    Precisely the same thing happens with meningitis. At least 10 percent of young adults, and 
perhaps 30 percent of teenagers, carry the deadly meningococcal bacterium, but it lives quite 
harmlessly in the throat. Just occasionally—in about one young person in a hundred 
thousand—it gets into the bloodstream and makes them very ill indeed. In the worst cases, 
death can come in twelve hours. That’s shockingly quick. “You can have a person who’s in 
perfect health at breakfast and dead by evening,” says Marsh. 

    We would have much more success with bacteria if we weren’t so profligate with our best 
weapon against them: antibiotics. Remarkably, by one estimate some 70 percent of the 
antibiotics used in the developed world are given to farm animals, often routinely in stock 
feed, simply to promote growth or as a precaution against infection. Such applications give 
bacteria every opportunity to evolve a resistance to them. It is an opportunity that they have 
enthusiastically seized. 



    In 1952, penicillin was fully effective against all strains of staphylococcus bacteria, to such 
an extent that by the early 1960s the U.S. surgeon general, William Stewart, felt confident 
enough to declare: “The time has come to close the book on infectious diseases. We have 
basically wiped out infection in the United States.” Even as he spoke, however, some 90 
percent of those strains were in the process of developing immunity to penicillin. Soon one of 
these new strains, called Methicillin-Resistant Staphylococcus Aureus, began to show up in 
hospitals. Only one type of antibiotic, vancomycin, remained effective against it, but in 1997 
a hospital in Tokyo reported the appearance of a strain that could resist even that. Within 
months it had spread to six other Japanese hospitals. All over, the microbes are beginning to 
win the war again: in U.S. hospitals alone, some fourteen thousand people a year die from 
infections they pick up there. As James Surowiecki has noted, given a choice between 
developing antibiotics that people will take every day for two weeks or antidepressants that 
people will take every day forever, drug companies not surprisingly opt for the latter. 
Although a few antibiotics have been toughened up a bit, the pharmaceutical industry hasn’t 
given us an entirely new antibiotic since the 1970s. 

    Our carelessness is all the more alarming since the discovery that many other ailments may 
be bacterial in origin. The process of discovery began in 1983 when Barry Marshall, a doctor 
in Perth, Western Australia, found that many stomach cancers and most stomach ulcers are 
caused by a bacterium called Helicobacter pylori. Even though his findings were easily tested, 
the notion was so radical that more than a decade would pass before they were generally 
accepted. America’s National Institutes of Health, for instance, didn’t officially endorse the 
idea until 1994. “Hundreds, even thousands of people must have died from ulcers who 
wouldn’t have,” Marshall told a reporter from Forbes in 1999. 

    Since then further research has shown that there is or may well be a bacterial component in 
all kinds of other disorders—heart disease, asthma, arthritis, multiple sclerosis, several types 
of mental disorders, many cancers, even, it has been suggested (inScience no less), obesity. 
The day may not be far off when we desperately require an effective antibiotic and haven’t 
got one to call on. 

    It may come as a slight comfort to know that bacteria can themselves get sick. They are 
sometimes infected by bacteriophages (or simply phages), a type of virus. A virus is a strange 
and unlovely entity—“a piece of nucleic acid surrounded by bad news” in the memorable 
phrase of the Nobel laureate Peter Medawar. Smaller and simpler than bacteria, viruses aren’t 
themselves alive. In isolation they are inert and harmless. But introduce them into a suitable 
host and they burst into busyness—into life. About five thousand types of virus are known, 
and between them they afflict us with many hundreds of diseases, ranging from the flu and 
common cold to those that are most invidious to human well-being: smallpox, rabies, yellow 
fever, ebola, polio, and the human immunodeficiency virus, the source of AIDS. 

    Viruses prosper by hijacking the genetic material of a living cell and using it to produce 
more virus. They reproduce in a fanatical manner, then burst out in search of more cells to 
invade. Not being living organisms themselves, they can afford to be very simple. Many, 
including HIV, have ten genes or fewer, whereas even the simplest bacteria require several 
thousand. They are also very tiny, much too small to be seen with a conventional microscope. 
It wasn’t until 1943 and the invention of the electron microscope that science got its first look 
at them. But they can do immense damage. Smallpox in the twentieth century alone killed an 
estimated 300 million people. 



    They also have an unnerving capacity to burst upon the world in some new and startling 
form and then to vanish again as quickly as they came. In 1916, in one such case, people in 
Europe and America began to come down with a strange sleeping sickness, which became 
known as encephalitis lethargica. Victims would go to sleep and not wake up. They could be 
roused without great difficulty to take food or go to the lavatory, and would answer questions 
sensibly—they knew who and where they were—though their manner was always apathetic. 

    However, the moment they were permitted to rest, they would sink at once back into 
deepest slumber and remain in that state for as long as they were left. Some went on in this 
manner for months before dying. A very few survived and regained consciousness but not 
their former liveliness. They existed in a state of profound apathy, “like extinct volcanoes,” in 
the words of one doctor. In ten years the disease killed some five million people and then 
quietly went away. It didn’t get much lasting attention because in the meantime an even worse 
epidemic—indeed, the worst in history—swept across the world. 

    It is sometimes called the Great Swine Flu epidemic and sometimes the Great Spanish Flu 
epidemic, but in either case it was ferocious. World War I killed twenty-one million people in 
four years; swine flu did the same in its first four months. Almost 80 percent of American 
casualties in the First World War came not from enemy fire, but from flu. In some units the 
mortality rate was as high as 80 percent. 

    Swine flu arose as a normal, nonlethal flu in the spring of 1918, but somehow over the 
following months—no one knows how or where—it mutated into something more severe. A 
fifth of victims suffered only mild symptoms, but the rest became gravely ill and often died. 
Some succumbed within hours; others held on for a few days. 

    In the United States, the first deaths were recorded among sailors in Boston in late August 
1918, but the epidemic quickly spread to all parts of the country. Schools closed, public 
entertainments were shut down, people everywhere wore masks. It did little good. Between 
the autumn of 1918 and spring of the following year, 548,452 people died of the flu in 
America. The toll in Britain was 220,000, with similar numbers dead in France and Germany. 
No one knows the global toll, as records in the Third World were often poor, but it was not 
less than 20 million and probably more like 50 million. Some estimates have put the global 
total as high as 100 million. 

    In an attempt to devise a vaccine, medical authorities conducted tests on volunteers at a 
military prison on Deer Island in Boston Harbor. The prisoners were promised pardons if they 
survived a battery of tests. These tests were rigorous to say the least. First the subjects were 
injected with infected lung tissue taken from the dead and then sprayed in the eyes, nose, and 
mouth with infectious aerosols. If they still failed to succumb, they had their throats swabbed 
with discharges taken from the sick and dying. If all else failed, they were required to sit 
open-mouthed while a gravely ill victim was helped to cough into their faces. 

    Out of—somewhat amazingly—three hundred men who volunteered, the doctors chose 
sixty-two for the tests. None contracted the flu—not one. The only person who did grow ill 
was the ward doctor, who swiftly died. The probable explanation for this is that the epidemic 
had passed through the prison a few weeks earlier and the volunteers, all of whom had 
survived that visitation, had a natural immunity. 

    Much about the 1918 flu is understood poorly or not at all. One mystery is how it erupted 
suddenly, all over, in places separated by oceans, mountain ranges, and other earthly 



impediments. A virus can survive for no more than a few hours outside a host body, so how 
could it appear in Madrid, Bombay, and Philadelphia all in the same week? 

    The probable answer is that it was incubated and spread by people who had only slight 
symptoms or none at all. Even in normal outbreaks, about 10 percent of people have the flu 
but are unaware of it because they experience no ill effects. And because they remain in 
circulation they tend to be the great spreaders of the disease. 

    That would account for the 1918 outbreak’s widespread distribution, but it still doesn’t 
explain how it managed to lay low for several months before erupting so explosively at more 
or less the same time all over. Even more mysterious is that it was primarily devastating to 
people in the prime of life. Flu normally is hardest on infants and the elderly, but in the 1918 
outbreak deaths were overwhelmingly among people in their twenties and thirties. Older 
people may have benefited from resistance gained from an earlier exposure to the same strain, 
but why the very young were similarly spared is unknown. The greatest mystery of all is why 
the 1918 flu was so ferociously deadly when most flus are not. We still have no idea. 

    From time to time certain strains of virus return. A disagreeable Russian virus known as 
H1N1 caused severe outbreaks over wide areas in 1933, then again in the 1950s, and yet again 
in the 1970s. Where it went in the meantime each time is uncertain. One suggestion is that 
viruses hide out unnoticed in populations of wild animals before trying their hand at a new 
generation of humans. No one can rule out the possibility that the Great Swine Flu epidemic 
might once again rear its head. 

    And if it doesn’t, others well might. New and frightening viruses crop up all the time. 
Ebola, Lassa, and Marburg fevers all have tended to flare up and die down again, but no one 
can say that they aren’t quietly mutating away somewhere, or simply awaiting the right 
opportunity to burst forth in a catastrophic manner. It is now apparent that AIDS has been 
among us much longer than anyone originally suspected. Researchers at the Manchester 
Royal Infirmary in England discovered that a sailor who had died of mysterious, untreatable 
causes in 1959 in fact had AIDS. But for whatever reasons the disease remained generally 
quiescent for another twenty years. 

    The miracle is that other such diseases haven’t gone rampant. Lassa fever, which wasn’t 
first detected until 1969, in West Africa, is extremely virulent and little understood. In 1969, a 
doctor at a Yale University lab in New Haven, Connecticut, who was studying Lassa fever 
came down with it. He survived, but, more alarmingly, a technician in a nearby lab, with no 
direct exposure, also contracted the disease and died. 

    Happily the outbreak stopped there, but we can’t count on such good fortune always. Our 
lifestyles invite epidemics. Air travel makes it possible to spread infectious agents across the 
planet with amazing ease. An ebola virus could begin the day in, say, Benin, and finish it in 
New York or Hamburg or Nairobi, or all three. It means also that medical authorities 
increasingly need to be acquainted with pretty much every malady that exists everywhere, but 
of course they are not. In 1990, a Nigerian living in Chicago was exposed to Lassa fever on a 
visit to his homeland, but didn’t develop symptoms until he had returned to the United States. 
He died in a Chicago hospital without diagnosis and without anyone taking any special 
precautions in treating him, unaware that he had one of the most lethal and infectious diseases 
on the planet. Miraculously, no one else was infected. We may not be so lucky next time. 

    And on that sobering note, it’s time to return to the world of the visibly living. 



 

21    LIFE GOES ON 

 

 

 

 

IT ISN’T EASY to become a fossil. The fate of nearly all living organisms—over 99.9 
percent of them—is to compost down to nothingness. When your spark is gone, every 
molecule you own will be nibbled off you or sluiced away to be put to use in some other 
system. That’s just the way it is. Even if you make it into the small pool of organisms, the less 
than 0.1 percent, that don’t get devoured, the chances of being fossilized are very small. 

    In order to become a fossil, several things must happen. First, you must die in the right 
place. Only about 15 percent of rocks can preserve fossils, so it’s no good keeling over on a 
future site of granite. In practical terms the deceased must become buried in sediment, where 
it can leave an impression, like a leaf in wet mud, or decompose without exposure to oxygen, 
permitting the molecules in its bones and hard parts (and very occasionally softer parts) to be 
replaced by dissolved minerals, creating a petrified copy of the original. Then as the 
sediments in which the fossil lies are carelessly pressed and folded and pushed about by 
Earth’s processes, the fossil must somehow maintain an identifiable shape. Finally, but above 
all, after tens of millions or perhaps hundreds of millions of years hidden away, it must be 
found and recognized as something worth keeping. 

    Only about one bone in a billion, it is thought, ever becomes fossilized. If that is so, it 
means that the complete fossil legacy of all the Americans alive today—that’s 270 million 
people with 206 bones each—will only be about fifty bones, one quarter of a complete 
skeleton. That’s not to say of course that any of these bones will actually be found. Bearing in 
mind that they can be buried anywhere within an area of slightly over 3.6 million square 
miles, little of which will ever be turned over, much less examined, it would be something of 
a miracle if they were. Fossils are in every sense vanishingly rare. Most of what has lived on 
Earth has left behind no record at all. It has been estimated that less than one species in ten 
thousand has made it into the fossil record. That in itself is a stunningly infinitesimal 
proportion. However, if you accept the common estimate that the Earth has produced 30 
billion species of creature in its time and Richard Leakey and Roger Lewin’s statement (in 
The Sixth Extinction ) that there are 250,000 species of creature in the fossil record, that 
reduces the proportion to just one in 120,000. Either way, what we possess is the merest 
sampling of all the life that Earth has spawned. 

    Moreover, the record we do have is hopelessly skewed. Most land animals, of course, don’t 
die in sediments. They drop in the open and are eaten or left to rot or weather down to 
nothing. The fossil record consequently is almost absurdly biased in favor of marine creatures. 
About 95 percent of all the fossils we possess are of animals that once lived under water, 
mostly in shallow seas. 

  



    I mention all this to explain why on a gray day in February I went to the Natural History 
Museum in London to meet a cheerful, vaguely rumpled, very likeable paleontologist named 
Richard Fortey. 

    Fortey knows an awful lot about an awful lot. He is the author of a wry, splendid book 
called Life: An Unauthorised Biography, which covers the whole pageant of animate creation. 
But his first love is a type of marine creature called trilobites that once teemed in Ordovician 
seas but haven’t existed for a long time except in fossilized form. All shared a basic body plan 
of three parts, or lobes—head, tail, thorax—from which comes the name. Fortey found his 
first when he was a boy clambering over rocks at St. David’s Bay in Wales. He was hooked  
for life. 

   He took me to a gallery of tall metal cupboards. Each cupboard was filled with shallow 
drawers, and each drawer was filled with stony trilobites—twenty thousand specimens in all. 

   “It seems like a big number,” he agreed, “but you have to remember that millions upon 
millions of trilobites lived for millions upon millions of years in ancient seas, so twenty 
thousand isn’t a huge number. And most of these are only partial specimens. Finding a 
complete trilobite fossil is still a big moment for a paleontologist.” 

   Trilobites first appeared—fully formed, seemingly from nowhere—about 540 million years 
ago, near the start of the great outburst of complex life popularly known as the Cambrian 
explosion, and then vanished, along with a great deal else, in the great and still mysterious 
Permian extinction 300,000 or so centuries later. As with all extinct creatures, there is a 
natural temptation to regard them as failures, but in fact they were among the most successful 
animals ever to live. Their reign ran for 300 million years—twice the span of dinosaurs, 
which were themselves one of history’s great survivors. Humans, Fortey points out, have 
survived so far for one-half of 1 percent as long. 

   With so much time at their disposal, the trilobites proliferated prodigiously. Most remained 
small, about the size of modern beetles, but some grew to be as big as platters. Altogether 
they formed at least five thousand genera and sixty thousand species—though more turn up 
all the time. Fortey had recently been at a conference in South America where he was 
approached by an academic from a small provincial university in Argentina. “She had a box 
that was full of interesting things—trilobites that had never been seen before in South 
America, or indeed anywhere, and a great deal else. She had no research facilities to study 
them and no funds to look for more. Huge parts of the world are still unexplored.” 

   “In terms of trilobites?” 

   “No, in terms of everything.” 

  

   Throughout the nineteenth century, trilobites were almost the only known forms of early 
complex life, and for that reason were assiduously collected and studied. The big mystery 
about them was their sudden appearance. Even now, as Fortey says, it can be startling to go to 
the right formation of rocks and to work your way upward through the eons finding no visible 
life at all, and then suddenly “a whole Profallotaspis or Elenellus as big as a crab will pop 
into your waiting hands.” These were creatures with limbs, gills, nervous systems, probing 
antennae, “a brain of sorts,” in Fortey’s words, and the strangest eyes ever seen. Made of 



calcite rods, the same stuff that forms limestone, they constituted the earliest visual systems 
known. More than this, the earliest trilobites didn’t consist of just one venturesome species 
but dozens, and didn’t appear in one or two locations but all over. Many thinking people in 
the nineteenth century saw this as proof of God’s handiwork and refutation of Darwin’s 
evolutionary ideals. If evolution proceeded slowly, they asked, then how did he account for 
this sudden appearance of complex, fully formed creatures? The fact is, he couldn’t. 

    And so matters seemed destined to remain forever until one day in 1909, three months shy 
of the fiftieth anniversary of the publication of Darwin’s On the Origin of Species , when a 
paleontologist named Charles Doolittle Walcott made an extraordinary find in the Canadian 
Rockies. 

    Walcott was born in 1850 and grew up near Utica, New York, in a family of modest means, 
which became more modest still with the sudden death of his father when Walcott was an 
infant. As a boy Walcott discovered that he had a knack for finding fossils, particularly 
trilobites, and built up a collection of sufficient distinction that it was bought by Louis 
Agassiz for his museum at Harvard for a small fortune—about $70,000 in today’s money. 
Although he had barely a high school education and was self taught in the sciences, Walcott 
became a leading authority on trilobites and was the first person to establish that trilobites 
were arthropods, the group that includes modern insects and crustaceans. 

    In 1879 he took a job as a field researcher with the newly formed United States Geological 
Survey and served with such distinction that within fifteen years he had risen to be its head. In 
1907 he was appointed secretary of the Smithsonian Institution, where he remained until his 
death in 1927. Despite his administrative obligations, he continued to do fieldwork and to 
write prolifically. “His books fill a library shelf,” according to Fortey. Not incidentally, he 
was also a founding director of the National Advisory Committee for Aeronautics, which 
eventually became the National Aeronautics and Space Agency, or NASA, and thus can 
rightly be considered the grandfather of the space age. 

    But what he is remembered for now is an astute but lucky find in British Columbia, high 
above the little town of Field, in the late summer of 1909. The customary version of the story 
is that Walcott, accompanied by his wife, was riding on horseback on a mountain trail beneath 
the spot called the Burgess Ridge when his wife’s horse slipped on loose stones. Dismounting 
to assist her, Walcott discovered that the horse had turned a slab of shale that contained fossil 
crustaceans of an especially ancient and unusual type. Snow was falling—winter comes early 
to the Canadian Rockies—so they didn’t linger, but the next year at the first opportunity 
Walcott returned to the spot. Tracing the presumed route of the rocks’ slide, he climbed 750 
feet to near the mountain’s summit. There, 8,000 feet above sea level, he found a shale 
outcrop, about the length of a city block, containing an unrivaled array of fossils from soon 
after the moment when complex life burst forth in dazzling profusion—the famous Cambrian 
explosion. Walcott had found, in effect, the holy grail of paleontology. The outcrop became 
known as the Burgess Shale, and for a long time it provided “our sole vista upon the inception 
of modern life in all its fullness,” as the late Stephen Jay Gould recorded in his popular book 
Wonderful Life . 

    Gould, ever scrupulous, discovered from reading Walcott’s diaries that the story of the 
Burgess Shale’s discovery appears to have been somewhat embroidered—Walcott makes no 
mention of a slipping horse or falling snow—but there is no disputing that it was an 
extraordinary find. 



    It is almost impossible for us whose time on Earth is limited to a breezy few decades to 
appreciate how remote in time from us the Cambrian outburst was. If you could fly backwards 
into the past at the rate of one year per second, it would take you about half an hour to reach 
the time of Christ, and a little over three weeks to get back to the beginnings of human life. 
But it would take you twenty years to reach the dawn of the Cambrian period. It was, in other 
words, an extremely long time ago, and the world was a very different place. 

    For one thing, 500-million-plus years ago when the Burgess Shale was formed it wasn’t at 
the top of a mountain but at the foot of one. Specifically it was a shallow ocean basin at the 
bottom of a steep cliff. The seas of that time teemed with life, but normally the animals left no 
record because they were soft-bodied and decayed upon dying. But at Burgess the cliff 
collapsed, and the creatures below, entombed in a mudslide, were pressed like flowers in a 
book, their features preserved in wondrous detail. 

    In annual summer trips from 1910 to 1925 (by which time he was seventy-five years old), 
Walcott excavated tens of thousands of specimens (Gould says 80,000; the normally 
unimpeachable fact checkers of National Georgraphic say 60,000), which he brought back to 
Washington for further study. In both sheer numbers and diversity the collection was 
unparalleled. Some of the Burgess fossils had shells; many others did not. Some were sighted, 
others blind. The variety was enormous, consisting of 140 species by one count. “The Burgess 
Shale included a range of disparity in anatomical designs never again equaled, and not 
matched today by all the creatures in the world’s oceans,” Gould wrote. 

    Unfortunately, according to Gould, Walcott failed to discern the significance of what he 
had found. “Snatching defeat from the jaws of victory,” Gould wrote in another work, Eight 
Little Piggies, “Walcott then proceeded to misinterpret these magnificent fossils in the deepest 
possible way.” He placed them into modern groups, making them ancestral to today’s worms, 
jellyfish, and other creatures, and thus failed to appreciate their distinctness. “Under such an 
interpretation,” Gould sighed, “life began in primordial simplicity and moved inexorably, 
predictably onward to more and better.” 

    Walcott died in 1927 and the Burgess fossils were largely forgotten. For nearly half a 
century they stayed shut away in drawers in the American Museum of Natural History in 
Washington, seldom consulted and never questioned. Then in 1973 a graduate student from 
Cambridge University named Simon Conway Morris paid a visit to the collection. He was 
astonished by what he found. The fossils were far more varied and magnificent than Walcott 
had indicated in his writings. In taxonomy the category that describes the basic body plans of 
all organisms is the phylum, and here, Conway Morris concluded, were drawer after drawer of 
such anatomical singularities—all amazingly and unaccountably unrecognized by the man 
who had found them. 

    With his supervisor, Harry Whittington, and fellow graduate student Derek Briggs, Conway 
Morris spent the next several years making a systematic revision of the entire collection, and 
cranking out one exciting monograph after another as discovery piled upon discovery. Many 
of the creatures employed body plans that were not simply unlike anything seen before or 
since, but were bizarrely different. One, Opabinia, had five eyes and a nozzle-like snout with 
claws on the end. Another, a disc-shaped being called Peytoia, looked almost comically like a 
pineapple slice. A third had evidently tottered about on rows of stilt-like legs, and was so odd 
that they named it Hallucigenia. There was so much unrecognized novelty in the collection 
that at one point upon opening a new drawer Conway Morris famously was heard to mutter, 
“Oh fuck, not another phylum.” 



    The English team’s revisions showed that the Cambrian had been a time of unparalleled 
innovation and experimentation in body designs. For almost four billion years life had 
dawdled along without any detectable ambitions in the direction of complexity, and then 
suddenly, in the space of just five or ten million years, it had created all the basic body 
designs still in use today. Name a creature, from a nematode worm to Cameron Diaz, and they 
all use architecture first created in the Cambrian party. 

    What was most surprising, however, was that there were so many body designs that had 
failed to make the cut, so to speak, and left no descendants. Altogether, according to Gould, at 
least fifteen and perhaps as many as twenty of the Burgess animals belonged to no recognized 
phylum. (The number soon grew in some popular accounts to as many as one hundred—far 
more than the Cambridge scientists ever actually claimed.) “The history of life,” wrote Gould, 
“is a story of massive removal followed by differentiation within a few surviving stocks, not 
the conventional tale of steadily increasing excellence, complexity, and diversity.” 
Evolutionary success, it appeared, was a lottery. 

    One creature thatdid manage to slip through, a small wormlike being called Pikaia 
gracilens, was found to have a primitive spinal column, making it the earliest known ancestor 
of all later vertebrates, including us.Pikaia were by no means abundant among the Burgess 
fossils, so goodness knows how close they may have come to extinction. Gould, in a famous 
quotation, leaves no doubt that he sees our lineal success as a fortunate fluke: “Wind back the 
tape of life to the early days of the Burgess Shale; let it play again from an identical starting 
point, and the chance becomes vanishingly small that anything like human intelligence would 
grace the replay.” 

    Gould’s book was published in 1989 to general critical acclaim and was a great commercial 
success. What wasn’t generally known was that many scientists didn’t agree with Gould’s 
conclusions at all, and that it was all soon to get very ugly. In the context of the Cambrian, 
“explosion” would soon have more to do with modern tempers than ancient physiological 
facts. 

  

    In fact, we now know, complex organisms existed at least a hundred million years before 
the Cambrian. We should have known a whole lot sooner. Nearly forty years after Walcott 
made his discovery in Canada, on the other side of the planet in Australia, a young geologist 
named Reginald Sprigg found something even older and in its way just as remarkable. 

    In 1946 Sprigg was a young assistant government geologist for the state of South Australia 
when he was sent to make a survey of abandoned mines in the Ediacaran Hills of the Flinders 
Range, an expanse of baking outback some three hundred miles north of Adelaide. The idea 
was to see if there were any old mines that might be profitably reworked using newer 
technologies, so he wasn’t studying surface rocks at all, still less fossils. But one day while 
eating his lunch, Sprigg idly overturned a hunk of sandstone and was surprised—to put it 
mildly—to see that the rock’s surface was covered in delicate fossils, rather like the 
impressions leaves make in mud. These rocks predated the Cambrian explosion. He was 
looking at the dawn of visible life. 

    Sprigg submitted a paper to Nature , but it was turned down. He read it instead at the next 
annual meeting of the Australian and New Zealand Association for the Advancement of 
Science, but it failed to find favor with the association’s head, who said the Ediacaran 



imprints were merely “fortuitous inorganic markings”—patterns made by wind or rain or 
tides, but not living beings. His hopes not yet entirely crushed, Sprigg traveled to London and 
presented his findings to the 1948 International Geological Congress, but failed to excite 
either interest or belief. Finally, for want of a better outlet, he published his findings in the 
Transactions of the Royal Society of South Australia. Then he quit his government job and 
took up oil exploration. 

    Nine years later, in 1957, a schoolboy named John Mason, while walking through 
Charnwood Forest in the English Midlands, found a rock with a strange fossil in it, similar to 
a modern sea pen and exactly like some of the specimens Sprigg had found and been trying to 
tell everyone about ever since. The schoolboy turned it in to a paleontologist at the University 
of Leicester, who identified it at once as Precambrian. Young Mason got his picture in the 
papers and was treated as a precocious hero; he still is in many books. The specimen was 
named in his honor Chamia masoni. 

    Today some of Sprigg’s original Ediacaran specimens, along with many of the other fifteen 
hundred specimens that have been found throughout the Flinders Range since that time, can 
be seen in a glass case in an upstairs room of the stout and lovely South Australian Museum 
in Adelaide, but they don’t attract a great deal of attention. The delicately etched patterns are 
rather faint and not terribly arresting to the untrained eye. They are mostly small and disc-
shaped, with occasional, vague trailing ribbons. Fortey has described them as “soft-bodied 
oddities.” 

    There is still very little agreement about what these things were or how they lived. They 
had, as far as can be told, no mouth or anus with which to take in and discharge digestive 
materials, and no internal organs with which to process them along the way. “In life,” Fortey 
says, “most of them probably simply lay upon the surface of the sandy sediment, like soft, 
structureless and inanimate flatfish.” At their liveliest, they were no more complex than 
jellyfish. All the Ediacaran creatures were diploblastic, meaning they were built from two 
layers of tissue. With the exception of jellyfish, all animals today are triploblastic. 

    Some experts think they weren’t animals at all, but more like plants or fungi. The 
distinctions between plant and animal are not always clear even now. The modern sponge 
spends its life fixed to a single spot and has no eyes or brain or beating heart, and yet is an 
animal. “When we go back to the Precambrian the differences between plants and animals 
were probably even less clear,” says Fortey. “There isn’t any rule that says you have to be 
demonstrably one or the other.” 

    Nor is it agreed that the Ediacaran organisms are in any way ancestral to anything alive 
today (except possibly some jellyfish). Many authorities see them as a kind of failed 
experiment, a stab at complexity that didn’t take, possibly because the sluggish Ediacaran 
organisms were devoured or outcompeted by the lither and more sophisticated animals of the 
Cambrian period. 

    “There is nothing closely similar alive today,” Fortey has written. “They are difficult to 
interpret as any kind of ancestors of what was to follow.” 

    The feeling was that ultimately they weren’t terribly important to the development of life 
on Earth. Many authorities believe that there was a mass extermination at the Precambrian–
Cambrian boundary and that all the Ediacaran creatures (except the uncertain jellyfish) failed 



to move on to the next phase. The real business of complex life, in other words, started with 
the Cambrian explosion. That’s how Gould saw it in any case. 

  

    As for the revisions of the Burgess Shale fossils, almost at once people began to question 
the interpretations and, in particular, Gould’s interpretation of the interpretations. “From the 
first there were a number of scientists who doubted the account that Steve Gould had 
presented, however much they admired the manner of its delivery,” Fortey wrote in Life. That 
is putting it mildly. 

    “If only Stephen Gould could think as clearly as he writes!” barked the Oxford academic 
Richard Dawkins in the opening line of a review (in the London Sunday Telegraph) of 
Wonderful Life. Dawkins acknowledged that the book was “unputdownable” and a “literary 
tour-de-force,” but accused Gould of engaging in a “grandiloquent and near-disingenuous” 
misrepresentation of the facts by suggesting that the Burgess revisions had stunned the 
paleontological community. “The view that he is attacking—that evolution marches 
inexorably toward a pinnacle such as man—has not been believed for 50 years,” Dawkins 
fumed. 

    And yet that was exactly the conclusion to which many general reviewers were drawn. 
One, writing in the New York Times Book Review, cheerfully suggested that as a result of 
Gould’s book scientists “have been throwing out some preconceptions that they had not 
examined for generations. They are, reluctantly or enthusiastically, accepting the idea that 
humans are as much an accident of nature as a product of orderly development.” 

    But the real heat directed at Gould arose from the belief that many of his conclusions were 
simply mistaken or carelessly inflated. Writing in the journal Evolution, Dawkins attacked 
Gould’s assertions that “evolution in the Cambrian was a different kind of process from 
today” and expressed exasperation at Gould’s repeated suggestions that “the Cambrian was a 
period of evolutionary ‘experiment,’ evolutionary ‘trial and error,’ evolutionary ‘false starts.’ . 
. . It was the fertile time when all the great ‘fundamental body plans’ were invented. 
Nowadays, evolution just tinkers with old body plans. Back in the Cambrian, new phyla and 
new classes arose. Nowadays we only get new species!” 

    Noting how often this idea—that there are no new body plans—is picked up, Dawkins says: 
“It is as though a gardener looked at an oak tree and remarked, wonderingly: ‘Isn’t it strange 
that no major new boughs have appeared on this tree for many years? These days, all the new 
growth appears to be at the twig level.’ ” 

    “It was a strange time,” Fortey says now, “especially when you reflected that this was all 
about something that happened five hundred million years ago, but feelings really did run 
quite high. I joked in one of my books that I felt as if I ought to put a safety helmet on before 
writing about the Cambrian period, but it did actually feel a bit like that.” 

    Strangest of all was the response of one of the heroes of Wonderful Life, Simon Conway 
Morris, who startled many in the paleontological community by rounding abruptly on Gould 
in a book of his own, The Crucible of Creation. The book treated Gould “with contempt, even 
loathing,” in Fortey’s words. “I have never encountered such spleen in a book by a 
professional,” Fortey wrote later. “The casual reader of The Crucible of Creation, unaware of 



the history, would never gather that the author’s views had once been close to (if not actually 
shared with) Gould’s.” 

    When I asked Fortey about it, he said: “Well, it was very strange, quite shocking really, 
because Gould’s portrayal of him had been so flattering. I could only assume that Simon was 
embarrassed. You know, science changes but books are permanent, and I suppose he regretted 
being so irremediably associated with views that he no longer altogether held. There was all 
that stuff about ‘oh fuck, another phylum’ and I expect he regretted being famous for that.” 

    What happened was that the early Cambrian fossils began to undergo a period of critical 
reappraisal. Fortey and Derek Briggs—one of the other principals in Gould’s book—used a 
method known as cladistics to compare the various Burgess fossils. In simple terms, cladistics 
consists of organizing organisms on the basis of shared features. Fortey gives as an example 
the idea of comparing a shrew and an elephant. If you considered the elephant’s large size and 
striking trunk you might conclude that it could have little in common with a tiny, sniffing 
shrew. But if you compared both of them with a lizard, you would see that the elephant and 
shrew were in fact built to much the same plan. In essence, what Fortey is saying is that 
Gould saw elephants and shrews where they saw mammals. The Burgess creatures, they 
believed, weren’t as strange and various as they appeared at first sight. “They were often no 
stranger than trilobites,” Fortey says now. “It is just that we have had a century or so to get 
used to trilobites. Familiarity, you know, breeds familiarity.” 

    This wasn’t, I should note, because of sloppiness or inattention. Interpreting the forms and 
relationships of ancient animals on the basis of often distorted and fragmentary evidence is 
clearly a tricky business. Edward O. Wilson has noted that if you took selected species of 
modern insects and presented them as Burgess-style fossils nobody would ever guess that they 
were all from the same phylum, so different are their body plans. Also instrumental in helping 
revisions were the discoveries of two further early Cambrian sites, one in Greenland and one 
in China, plus more scattered finds, which between them yielded many additional and often 
better specimens. 

    The upshot is that the Burgess fossils were found to be not so different after all. 
Hallucigenia, it turned out, had been reconstructed upside down. Its stilt-like legs were 
actually spikes along its back. Peytoia, the weird creature that looked like a pineapple slice, 
was found to be not a distinct creature but merely part of a larger animal called Anomalocaris. 
Many of the Burgess specimens have now been assigned to living phyla—just where Walcott 
put them in the first place. Hallucigenia and some others are thought to be related to 
Onychophora, a group of caterpillar-like animals. Others have been reclassified as precursors 
of the modern annelids. In fact, says Fortey, “there are relatively few Cambrian designs that 
are wholly novel. More often they turn out to be just interesting elaborations of well-
established designs.” As he wrote in his book Life: “None was as strange as a present day 
barnacle, nor as grotesque as a queen termite.” 

    So the Burgess Shale specimens weren’t so spectacular after all. This made them, as Fortey 
has written, “no less interesting, or odd, just more explicable.” Their weird body plans were 
just a kind of youthful exuberance—the evolutionary equivalent, as it were, of spiked hair and 
tongue studs. Eventually the forms settled into a staid and stable middle age. 

    But that still left the enduring question of where all these animals had come from—how 
they had suddenly appeared from out of nowhere. 



    Alas, it turns out the Cambrian explosion may not have been quite so explosive as all that. 
The Cambrian animals, it is now thought, were probably there all along, but were just too 
small to see. Once again it was trilobites that provided the clue—in particular that seemingly 
mystifying appearance of different types of trilobite in widely scattered locations around the 
globe, all at more or less the same time. 

    On the face of it, the sudden appearance of lots of fully formed but varied creatures would 
seem to enhance the miraculousness of the Cambrian outburst, but in fact it did the opposite. 
It is one thing to have one well-formed creature like a trilobite burst forth in isolation—that 
really is a wonder—but to have many of them, all distinct but clearly related, turning up 
simultaneously in the fossil record in places as far apart as China and New York clearly 
suggests that we are missing a big part of their history. There could be no stronger evidence 
that they simply had to have a forebear—some grandfather species that started the line in a 
much earlier past. 

    And the reason we haven’t found these earlier species, it is now thought, is that they were 
too tiny to be preserved. Says Fortey: “It isn’t necessary to be big to be a perfectly 
functioning, complex organism. The sea swarms with tiny arthropods today that have left no 
fossil record.” He cites the little copepod, which numbers in the trillions in modern seas and 
clusters in shoals large enough to turn vast areas of the ocean black, and yet our total 
knowledge of its ancestry is a single specimen found in the body of an ancient fossilized fish. 

    “The Cambrian explosion, if that’s the word for it, probably was more an increase in size 
than a sudden appearance of new body types,” Fortey says. “And it could have happened quite 
swiftly, so in that sense I suppose it was an explosion.” The idea is that just as mammals 
bided their time for a hundred million years until the dinosaurs cleared off and then seemingly 
burst forth in profusion all over the planet, so too perhaps the arthropods and other triploblasts 
waited in semimicroscopic anonymity for the dominant Ediacaran organisms to have their 
day. Says Fortey: “We know that mammals increased in size quite dramatically after the 
dinosaurs went—though when I say quite abruptly I of course mean it in a geological sense. 
We’re still talking millions of years.” 

    Incidentally, Reginald Sprigg did eventually get a measure of overdue credit. One of the 
main early genera, Spriggina, was named in his honor, as were several species, and the whole 
became known as the Ediacaran fauna after the hills through which he had searched. By this 
time, however, Sprigg’s fossil-hunting days were long over. After leaving geology he founded 
a successful oil company and eventually retired to an estate in his beloved Flinders Range, 
where he created a wildlife reserve. He died in 1994 a rich man. 



22    GOOD-BYE TO ALL THAT 

 

 

 

WHEN YOU CONSIDER it from a human perspective, and clearly it would be difficult for 
us to do otherwise, life is an odd thing. It couldn’t wait to get going, but then, having gotten 
going, it seemed in very little hurry to move on. 

    Consider the lichen. Lichens are just about the hardiest visible organisms on Earth, but 
among the least ambitious. They will grow happily enough in a sunny churchyard, but they 
particularly thrive in environments where no other organism would go—on blowy 
mountaintops and arctic wastes, wherever there is little but rock and rain and cold, and almost 
no competition. In areas of Antarctica where virtually nothing else will grow, you can find 
vast expanses of lichen—four hundred types of them—adhering devotedly to every wind-
whipped rock. 

    For a long time, people couldn’t understand how they did it. Because lichens grew on bare 
rock without evident nourishment or the production of seeds, many people—educated 
people—believed they were stones caught in the process of becoming plants. “Spontaneously, 
inorganic stone becomes living plant!” rejoiced one observer, a Dr. Homschuch, in 1819. 

    Closer inspection showed that lichens were more interesting than magical. They are in fact 
a partnership between fungi and algae. The fungi excrete acids that dissolve the surface of the 
rock, freeing minerals that the algae convert into food sufficient to sustain both. It is not a 
very exciting arrangement, but it is a conspicuously successful one. The world has more than 
twenty thousand species of lichens. 

    Like most things that thrive in harsh environments, lichens are slow-growing. It may take a 
lichen more than half a century to attain the dimensions of a shirt button. Those the size of 
dinner plates, writes David Attenborough, are therefore “likely to be hundreds if not 
thousands of years old.” It would be hard to imagine a less fulfilling existence. “They simply 
exist,” Attenborough adds, “testifying to the moving fact that life even at its simplest level 
occurs, apparently, just for its own sake.” 

    It is easy to overlook this thought that life just is. As humans we are inclined to feel that life 
must have a point. We have plans and aspirations and desires. We want to take constant 
advantage of all the intoxicating existence we’ve been endowed with. But what’s life to a 
lichen? Yet its impulse to exist, to be, is every bit as strong as ours—arguably even stronger. 
If I were told that I had to spend decades being a furry growth on a rock in the woods, I 
believe I would lose the will to go on. Lichens don’t. Like virtually all living things, they will 
suffer any hardship, endure any insult, for a moment’s additional existence. Life, in short, just 
wants to be. But—and here’s an interesting point—for the most part it doesn’t want to be 
much. 

    This is perhaps a little odd because life has had plenty of time to develop ambitions. If you 
imagine the 4,500-billion-odd years of Earth’s history compressed into a normal earthly day, 
then life begins very early, about 4A.M., with the rise of the first simple, single-celled 



organisms, but then advances no further for the next sixteen hours. Not until almost 8:30 in 
the evening, with the day five-sixths over, has Earth anything to show the universe but a 
restless skin of microbes. Then, finally, the first sea plants appear, followed twenty minutes 
later by the first jellyfish and the enigmatic Ediacaran fauna first seen by Reginald Sprigg in 
Australia. At 9:04P.M. trilobites swim onto the scene, followed more or less immediately by 
the shapely creatures of the Burgess Shale. Just before 10P.M. plants begin to pop up on the 
land. Soon after, with less than two hours left in the day, the first land creatures follow. 

    Thanks to ten minutes or so of balmy weather, by 10:24 the Earth is covered in the great 
carboniferous forests whose residues give us all our coal, and the first winged insects are 
evident. Dinosaurs plod onto the scene just before 11P.M. and hold sway for about three-
quarters of an hour. At twenty-one minutes to midnight they vanish and the age of mammals 
begins. Humans emerge one minute and seventeen seconds before midnight. The whole of our 
recorded history, on this scale, would be no more than a few seconds, a single human lifetime 
barely an instant. Throughout this greatly speeded-up day continents slide about and bang 
together at a clip that seems positively reckless. Mountains rise and melt away, ocean basins 
come and go, ice sheets advance and withdraw. And throughout the whole, about three times 
every minute, somewhere on the planet there is a flashbulb pop of light marking the impact of 
a Manson-sized meteor or one even larger. It’s a wonder that anything at all can survive in 
such a pummeled and unsettled environment. In fact, not many things do for long. 

    Perhaps an even more effective way of grasping our extreme recentness as a part of this 
4.5-billion-year-old picture is to stretch your arms to their fullest extent and imagine that 
width as the entire history of the Earth. On this scale, according to John McPhee in Basin and 
Range, the distance from the fingertips of one hand to the wrist of the other is Precambrian. 
All of complex life is in one hand, “and in a single stroke with a medium-grained nail file you 
could eradicate human history.” 

    Fortunately, that moment hasn’t happened, but the chances are good that it will. I don’t 
wish to interject a note of gloom just at this point, but the fact is that there is one other 
extremely pertinent quality about life on Earth: it goes extinct. Quite regularly. For all the 
trouble they take to assemble and preserve themselves, species crumple and die remarkably 
routinely. And the more complex they get, the more quickly they appear to go extinct. Which 
is perhaps one reason why so much of life isn’t terribly ambitious. 

  

    So anytime life does something bold it is quite an event, and few occasions were more 
eventful than when life moved on to the next stage in our narrative and came out of the sea. 

    Land was a formidable environment: hot, dry, bathed in intense ultraviolet radiation, 
lacking the buoyancy that makes movement in water comparatively effortless. To live on 
land, creatures had to undergo wholesale revisions of their anatomies. Hold a fish at each end 
and it sags in the middle, its backbone too weak to support it. To survive out of water, marine 
creatures needed to come up with new load-bearing internal architecture—not the sort of 
adjustment that happens overnight. Above all and most obviously, any land creature would 
have to develop a way to take its oxygen directly from the air rather than filter it from water. 
These were not trivial challenges to overcome. On the other hand, there was a powerful 
incentive to leave the water: it was getting dangerous down there. The slow fusion of the 
continents into a single landmass, Pangaea, meant there was much, much less coastline than 
formerly and thus much less coastal habitat. So competition was fierce. There was also an 



omnivorous and unsettling new type of predator on the scene, one so perfectly designed for 
attack that it has scarcely changed in all the long eons since its emergence: the shark. Never 
would there be a more propitious time to find an alternative environment to water. 

    Plants began the process of land colonization about 450 million years ago, accompanied of 
necessity by tiny mites and other organisms that they needed to break down and recycle dead 
organic matter on their behalf. Larger animals took a little longer to emerge, but by about 400 
million years ago they were venturing out of the water, too. Popular illustrations have 
encouraged us to envision the first venturesome land dwellers as a kind of ambitious fish—
something like the modern mudskipper, which can hop from puddle to puddle during 
droughts—or even as a fully formed amphibian. In fact, the first visible mobile residents on 
dry land were probably much more like modern wood lice, sometimes also known as pillbugs 
or sow bugs. These are the little bugs (crustaceans, in fact) that are commonly thrown into 
confusion when you upturn a rock or log. 

    For those that learned to breathe oxygen from the air, times were good. Oxygen levels in 
the Devonian and Carboniferous periods, when terrestrial life first bloomed, were as high as 
35 percent (as opposed to nearer 20 percent now). This allowed animals to grow remarkably 
large remarkably quickly. 

    And how, you may reasonably wonder, can scientists know what oxygen levels were like 
hundreds of millions of years ago? The answer lies in a slightly obscure but ingenious field 
known as isotope geochemistry. The long-ago seas of the Carboniferous and Devonian 
swarmed with tiny plankton that wrapped themselves inside tiny protective shells. Then, as 
now, the plankton created their shells by drawing oxygen from the atmosphere and combining 
it with other elements (carbon especially) to form durable compounds such as calcium 
carbonate. It’s the same chemical trick that goes on in (and is discussed elsewhere in relation 
to) the long-term carbon cycle—a process that doesn’t make for terribly exciting narrative but 
is vital for creating a livable planet. 

    Eventually in this process all the tiny organisms die and drift to the bottom of the sea, 
where they are slowly compressed into limestone. Among the tiny atomic structures the 
plankton take to the grave with them are two very stable isotopes—oxygen-16 and oxygen-18. 
(If you have forgotten what an isotope is, it doesn’t matter, though for the record it’s an atom 
with an abnormal number of neutrons.) This is where the geochemists come in, for the 
isotopes accumulate at different rates depending on how much oxygen or carbon dioxide is in 
the atmosphere at the time of their creation. By comparing these ancient ratios, the 
geochemists can cunningly read conditions in the ancient world—oxygen levels, air and ocean 
temperatures, the extent and timing of ice ages, and much else. By combining their isotope 
findings with other fossil residues—pollen levels and so on—scientists can, with considerable 
confidence, re-create entire landscapes that no human eye ever saw. 

    The principal reason oxygen levels were able to build up so robustly throughout the period 
of early terrestrial life was that much of the world’s landscape was dominated by giant tree 
ferns and vast swamps, which by their boggy nature disrupted the normal carbon recycling 
process. Instead of completely rotting down, falling fronds and other dead vegetative matter 
accumulated in rich, wet sediments, which were eventually squeezed into the vast coal beds 
that sustain much economic activity even now. 

    The heady levels of oxygen clearly encouraged outsized growth. The oldest indication of a 
surface animal yet found is a track left 350 million years ago by a millipede-like creature on a 



rock in Scotland. It was over three feet long. Before the era was out some millipedes would 
reach lengths more than double that. 

    With such creatures on the prowl, it is perhaps not surprising that insects in the period 
evolved a trick that could keep them safely out of tongue shot: they learned to fly. Some took 
to this new means of locomotion with such uncanny facility that they haven’t changed their 
techniques in all the time since. Then, as now, dragonflies could cruise at up to thirty-five 
miles an hour, instantly stop, hover, fly backwards, and lift far more proportionately than any 
human flying machine. “The U.S. Air Force,” one commentator has written, “has put them in 
wind tunnels to see how they do it, and despaired.” They, too, gorged on the rich air. In 
Carboniferous forests dragonflies grew as big as ravens. Trees and other vegetation likewise 
attained outsized proportions. Horsetails and tree ferns grew to heights of fifty feet, club 
mosses to a hundred and thirty. 

    The first terrestrial vertebrates—which is to say, the first land animals from which we 
would derive—are something of a mystery. This is partly because of a shortage of relevant 
fossils, but partly also because of an idiosyncratic Swede named Erik Jarvik whose odd 
interpretations and secretive manner held back progress on this question for almost half a 
century. Jarvik was part of a team of Scandinavian scholars who went to Greenland in the 
1930s and 1940s looking for fossil fish. In particular they sought lobe-finned fish of the type 
that presumably were ancestral to us and all other walking creatures, known as tetrapods. 

    Most animals are tetrapods, and all living tetrapods have one thing in common: four limbs 
that end in a maximum of five fingers or toes. Dinosaurs, whales, birds, humans, even fish—
all are tetrapods, which clearly suggests they come from a single common ancestor. The clue 
to this ancestor, it was assumed, would be found in the Devonian era, from about 400 million 
years ago. Before that time nothing walked on land. After that time lots of things did. Luckily 
the team found just such a creature, a three-foot-long animal called an Ichthyostega. The 
analysis of the fossil fell to Jarvik, who began his study in 1948 and kept at it for the next 
forty-eight years. Unfortunately, Jarvik refused to let anyone study his tetrapod. The world’s 
paleontologists had to be content with two sketchy interim papers in which Jarvik noted that 
the creature had five fingers in each of four limbs, confirming its ancestral importance. 

    Jarvik died in 1998. After his death, other paleontologists eagerly examined the specimen 
and found that Jarvik had severely miscounted the fingers and toes—there were actually eight 
on each limb—and failed to observe that the fish could not possibly have walked. The 
structure of the fin was such that it would have collapsed under its own weight. Needless to 
say, this did not do a great deal to advance our understanding of the first land animals. Today 
three early tetrapods are known and none has five digits. In short, we don’t know quite where 
we came from. 

    But come we did, though reaching our present state of eminence has not of course always 
been straightforward. Since life on land began, it has consisted of four megadynasties, as they 
are sometimes called. The first consisted of primitive, plodding but sometimes fairly hefty 
amphibians and reptiles. The best-known animal of this age was the Dimetrodon, a sail-
backed creature that is commonly confused with dinosaurs (including, I note, in a picture 
caption in the Carl Sagan book Comet). The Dimetrodon was in fact a synapsid. So, once 
upon a time, were we. Synapsids were one of the four main divisions of early reptilian life, 
the others being anapsids, euryapsids, and diapsids. The names simply refer to the number and 
location of small holes to be found in the sides of their owners’ skulls. Synapsids had one hole 
in their lower temples; diapsids had two; euryapsids had a single hole higher up. 



    Over time, each of these principal groupings split into further subdivisions, of which some 
prospered and some faltered. Anapsids gave rise to the turtles, which for a time, perhaps a 
touch improbably, appeared poised to predominate as the planet’s most advanced and deadly 
species, before an evolutionary lurch let them settle for durability rather than dominance. The 
synapsids divided into four streams, only one of which survived beyond the Permian. 
Happily, that was the stream we belonged to, and it evolved into a family of protomammals 
known as therapsids. These formed Megadynasty 2. 

    Unfortunately for the therapsids, their cousins the diapsids were also productively evolving, 
in their case into dinosaurs (among other things), which gradually proved too much for the 
therapsids. Unable to compete head to head with these aggressive new creatures, the 
therapsids by and large vanished from the record. A very few, however, evolved into small, 
furry, burrowing beings that bided their time for a very long while as little mammals. The 
biggest of them grew no larger than a house cat, and most were no bigger than mice. 
Eventually, this would prove their salvation, but they would have to wait nearly 150 million 
years for Megadynasty 3, the Age of Dinosaurs, to come to an abrupt end and make room for 
Megadynasty 4 and our own Age of Mammals. 

    Each of these massive transformations, as well as many smaller ones between and since, 
was dependent on that paradoxically important motor of progress: extinction. It is a curious 
fact that on Earth species death is, in the most literal sense, a way of life. No one knows how 
many species of organisms have existed since life began. Thirty billion is a commonly cited 
figure, but the number has been put as high as 4,000 billion. Whatever the actual total, 99.99 
percent of all species that have ever lived are no longer with us. “To a first approximation,” as 
David Raup of the University of Chicago likes to say, “all species are extinct.” For complex 
organisms, the average lifespan of a species is only about four million years—roughly about 
where we are now. 

    Extinction is always bad news for the victims, of course, but it appears to be a good thing 
for a dynamic planet. “The alternative to extinction is stagnation,” says Ian Tattersall of the 
American Museum of Natural History, “and stagnation is seldom a good thing in any realm.” 
(I should perhaps note that we are speaking here of extinction as a natural, long-term process. 
Extinction brought about by human carelessness is another matter altogether.) 

  

    Crises in Earth’s history are invariably associated with dramatic leaps afterward. The fall of 
the Ediacaran fauna was followed by the creative outburst of the Cambrian period. The 
Ordovician extinction of 440 million years ago cleared the oceans of a lot of immobile filter 
feeders and, somehow, created conditions that favored darting fish and giant aquatic reptiles. 
These in turn were in an ideal position to send colonists onto dry land when another blowout 
in the late Devonian period gave life another sound shaking. And so it has gone at scattered 
intervals through history. If most of these events hadn’t happened just as they did, just when 
they did, we almost certainly wouldn’t be here now. 

    Earth has seen five major extinction episodes in its time—the Ordovician, Devonian, 
Permian, Triassic, and Cretaceous, in that order—and many smaller ones. The Ordovician 
(440 million years ago) and Devonian (365 million) each wiped out about 80 to 85 percent of 
species. The Triassic (210 million years ago) and Cretaceous (65 million years) each wiped 
out 70 to 75 percent of species. But the real whopper was the Permian extinction of about 245 
million years ago, which raised the curtain on the long age of the dinosaurs. In the Permian, at 



least 95 percent of animals known from the fossil record check out, never to return. Even 
about a third of insect species went—the only occasion on which they were lost en masse. It is 
as close as we have ever come to total obliteration. 

    “It was, truly, a mass extinction, a carnage of a magnitude that had never troubled the Earth 
before,” says Richard Fortey. The Permian event was particularly devastating to sea creatures. 
Trilobites vanished altogether. Clams and sea urchins nearly went. Virtually all other marine 
organisms were staggered. Altogether, on land and in the water, it is thought that Earth lost 52 
percent of its families—that’s the level above genus and below order on the grand scale of life 
(the subject of the next chapter)—and perhaps as many as 96 percent of all its species. It 
would be a long time—as much as eighty million years by one reckoning—before species 
totals recovered. 

    Two points need to be kept in mind. First, these are all just informed guesses. Estimates for 
the number of animal species alive at the end of the Permian range from as low as 45,000 to 
as high as 240,000. If you don’t know how many species were alive, you can hardly specify 
with conviction the proportion that perished. Moreover, we are talking about the death of 
species, not individuals. For individuals the death toll could be much higher—in many cases, 
practically total. The species that survived to the next phase of life’s lottery almost certainly 
owe their existence to a few scarred and limping survivors. 

    In between the big kill-offs, there have also been many smaller, less well-known extinction 
episodes—the Hemphillian, Frasnian, Famennian, Rancholabrean, and a dozen or so others—
which were not so devastating to total species numbers, but often critically hit certain 
populations. Grazing animals, including horses, were nearly wiped out in the Hemphillian 
event about five million years ago. Horses declined to a single species, which appears so 
sporadically in the fossil record as to suggest that for a time it teetered on the brink of 
oblivion. Imagine a human history without horses, without grazing animals. 

    In nearly every case, for both big extinctions and more modest ones, we have bewilderingly 
little idea of what the cause was. Even after stripping out the more crackpot notions there are 
still more theories for what caused the extinction events than there have been events. At least 
two dozen potential culprits have been identified as causes or prime contributors: global 
warming, global cooling, changing sea levels, oxygen depletion of the seas (a condition 
known as anoxia), epidemics, giant leaks of methane gas from the seafloor, meteor and comet 
impacts, runaway hurricanes of a type known as hypercanes, huge volcanic upwellings, 
catastrophic solar flares. 

    This last is a particularly intriguing possibility. Nobody knows how big solar flares can get 
because we have only been watching them since the beginning of the space age, but the Sun is 
a mighty engine and its storms are commensurately enormous. A typical solar flare—
something we wouldn’t even notice on Earth—will release the energy equivalent of a billion 
hydrogen bombs and fling into space a hundred billion tons or so of murderous high-energy 
particles. The magnetosphere and atmosphere between them normally swat these back into 
space or steer them safely toward the poles (where they produce the Earth’s comely auroras), 
but it is thought that an unusually big blast, say a hundred times the typical flare, could 
overwhelm our ethereal defenses. The light show would be a glorious one, but it would almost 
certainly kill a very high proportion of all that basked in its glow. Moreover, and rather 
chillingly, according to Bruce Tsurutani of the NASA Jet Propulsion Laboratory, “it would 
leave no trace in history.” 



    What all this leaves us with, as one researcher has put it, is “tons of conjecture and very 
little evidence.” Cooling seems to be associated with at least three of the big extinction 
events—the Ordovician, Devonian, and Permian—but beyond that little is agreed, including 
whether a particular episode happened swiftly or slowly. Scientists can’t agree, for instance, 
whether the late Devonian extinction—the event that was followed by vertebrates moving 
onto the land—happened over millions of years or thousands of years or in one lively day. 

    One of the reasons it is so hard to produce convincing explanations for extinctions is that it 
is so very hard to exterminate life on a grand scale. As we have seen from the Manson impact, 
you can receive a ferocious blow and still stage a full, if presumably somewhat wobbly, 
recovery. So why, out of all the thousands of impacts Earth has endured, was the KT event so 
singularly devastating? Well, first itwas positively enormous. It struck with the force of 100 
million megatons. Such an outburst is not easily imagined, but as James Lawrence Powell has 
pointed out, if you exploded one Hiroshima-sized bomb for every person alive on earth today 
you would still be about a billion bombs short of the size of the KT impact. But even that 
alone may not have been enough to wipe out 70 percent of Earth’s life, dinosaurs included. 

    The KT meteor had the additional advantage—advantage if you are a mammal, that is—
that it landed in a shallow sea just ten meters deep, probably at just the right angle, at a time 
when oxygen levels were 10 percent higher than at present and so the world was more 
combustible. Above all the floor of the sea where it landed was made of rock rich in sulfur. 
The result was an impact that turned an area of seafloor the size of Belgium into aerosols of 
sulfuric acid. For months afterward, the Earth was subjected to rains acid enough to burn skin. 

    In a sense, an even greater question than that of what wiped out 70 percent of the species 
that were existing at the time is how did the remaining 30 percent survive? Why was the event 
so irremediably devastating to every single dinosaur that existed, while other reptiles, like 
snakes and crocodiles, passed through unimpeded? So far as we can tell no species of toad, 
newt, salamander, or other amphibian went extinct in North America. “Why should these 
delicate creatures have emerged unscathed from such an unparalleled disaster?” asks Tim 
Flannery in his fascinating prehistory of America, Eternal Frontier. 

    In the seas it was much the same story. All the ammonites vanished, but their cousins the 
nautiloids, who lived similar lifestyles, swam on. Among plankton, some species were 
practically wiped out—92 percent of foraminiferans, for instance—while other organisms like 
diatoms, designed to a similar plan and living alongside, were comparatively unscathed. 

    These are difficult inconsistencies. As Richard Fortey observes: “Somehow it does not 
seem satisfying just to call them ‘lucky ones’ and leave it at that.” If, as seems entirely likely, 
the event was followed by months of dark and choking smoke, then many of the insect 
survivors become difficult to account for. “Some insects, like beetles,” Fortey notes, “could 
live on wood or other things lying around. But what about those like bees that navigate by 
sunlight and need pollen? Explaining their survival isn’t so easy.” 

    Above all, there are the corals. Corals require algae to survive and algae require sunlight, 
and both together require steady minimum temperatures. Much publicity has been given in the 
last few years to corals dying from changes in sea temperature of only a degree or so. If they 
are that vulnerable to small changes, how did they survive the long impact winter? 

    There are also many hard-to-explain regional variations. Extinctions seem to have been far 
less severe in the southern hemisphere than the northern. New Zealand in particular appears to 



have come through largely unscathed even though it had almost no burrowing creatures. Even 
its vegetation was overwhelmingly spared, and yet the scale of conflagration elsewhere 
suggests that devastation was global. In short, there is just a great deal we don’t know. 

    Some animals absolutely prospered—including, a little surprisingly, the turtles once again. 
As Flannery notes, the period immediately after the dinosaur extinction could well be known 
as the Age of Turtles. Sixteen species survived in North America and three more came into 
existence soon after. 

    Clearly it helped to be at home in water. The KT impact wiped out almost 90 percent of 
land-based species but only 10 percent of those living in fresh water. Water obviously offered 
protection against heat and flame, but also presumably provided more sustenance in the lean 
period that followed. All the land-based animals that survived had a habit of retreating to a 
safer environment during times of danger—into water or underground—either of which 
would have provided considerable shelter against the ravages without. Animals that 
scavenged for a living would also have enjoyed an advantage. Lizards were, and are, largely 
impervious to the bacteria in rotting carcasses. Indeed, often they are positively drawn to it, 
and for a long while there were clearly a lot of putrid carcasses about. 

    It is often wrongly stated that only small animals survived the KT event. In fact, among the 
survivors were crocodiles, which were not just large but three times larger than they are today. 
But on the whole, it is true, most of the survivors were small and furtive. Indeed, with the 
world dark and hostile, it was a perfect time to be small, warm-blooded, nocturnal, flexible in 
diet, and cautious by nature—the very qualities that distinguished our mammalian forebears. 
Had our evolution been more advanced, we would probably have been wiped out. Instead, 
mammals found themselves in a world to which they were as well suited as anything alive. 

    However, it wasn’t as if mammals swarmed forward to fill every niche. “Evolution may 
abhor a vacuum,” wrote the paleobiologist Steven M. Stanley, “but it often takes a long time 
to fill it.” For perhaps as many as ten million years mammals remained cautiously small. In 
the early Tertiary, if you were the size of a bobcat you could be king. 

    But once they got going, mammals expanded prodigiously—sometimes to an almost 
preposterous degree. For a time, there were guinea pigs the size of rhinos and rhinos the size 
of a two-story house. Wherever there was a vacancy in the predatory chain, mammals rose 
(often literally) to fill it. Early members of the raccoon family migrated to South America, 
discovered a vacancy, and evolved into creatures the size and ferocity of bears. Birds, too, 
prospered disproportionately. For millions of years, a gigantic, flightless, carnivorous bird 
called Titanis was possibly the most ferocious creature in North America. Certainly it was the 
most daunting bird that ever lived. It stood ten feet high, weighed over eight hundred pounds, 
and had a beak that could tear the head off pretty much anything that irked it. Its family 
survived in formidable fashion for fifty million years, yet until a skeleton was discovered in 
Florida in 1963, we had no idea that it had ever existed. 

    Which brings us to another reason for our uncertainty about extinctions: the paltriness of 
the fossil record. We have touched already on the unlikelihood of any set of bones becoming 
fossilized, but the record is actually worse than you might think. Consider dinosaurs. 
Museums give the impression that we have a global abundance of dinosaur fossils. In fact, 
overwhelmingly museum displays are artificial. The giant Diplodocus that dominates the 
entrance hall of the Natural History Museum in London and has delighted and informed 
generations of visitors is made of plaster—built in 1903 in Pittsburgh and presented to the 



museum by Andrew Carnegie. The entrance hall of the American Museum of Natural History 
in New York is dominated by an even grander tableau: a skeleton of a large Barosaurus 
defending her baby from attack by a darting and toothy Allosaurus. It is a wonderfully 
impressive display—the Barosaurus rises perhaps thirty feet toward the high ceiling—but also 
entirely fake. Every one of the several hundred bones in the display is a cast. Visit almost any 
large natural history museum in the world—in Paris, Vienna, Frankfurt, Buenos Aires, 
Mexico City—and what will greet you are antique models, not ancient bones. 

    The fact is, we don’t really know a great deal about the dinosaurs. For the whole of the Age 
of Dinosaurs, fewer than a thousand species have been identified (almost half of them known 
from a single specimen), which is about a quarter of the number of mammal species alive 
now. Dinosaurs, bear in mind, ruled the Earth for roughly three times as long as mammals 
have, so either dinosaurs were remarkably unproductive of species or we have barely 
scratched the surface (to use an irresistibly apt cliché). 

    For millions of years through the Age of Dinosaurs not a single fossil has yet been found. 
Even for the period of the late Cretaceous—the most studied prehistoric period there is, 
thanks to our long interest in dinosaurs and their extinction—some three quarters of all 
species that lived may yet be undiscovered. Animals bulkier than the Diplodocus or more 
forbidding than tyrannosaurus may have roamed the Earth in the thousands, and we may 
never know it. Until very recently everything known about the dinosaurs of this period came 
from only about three hundred specimens representing just sixteen species. The scantiness of 
the record led to the widespread belief that dinosaurs were on their way out already when the 
KT impact occurred. 

    In the late 1980s a paleontologist from the Milwaukee Public Museum, Peter Sheehan, 
decided to conduct an experiment. Using two hundred volunteers, he made a painstaking 
census of a well-defined, but also well-picked-over, area of the famous Hell Creek formation 
in Montana. Sifting meticulously, the volunteers collected every last tooth and vertebra and 
chip of bone—everything that had been overlooked by previous diggers. The work took three 
years. When finished they found that they had more than tripled the global total of dinosaur 
fossils from the late Cretaceous. The survey established that dinosaurs remained numerous 
right up to the time of the KT impact. “There is no reason to believe that the dinosaurs were 
dying out gradually during the last three million years of the Cretaceous,” Sheehan reported. 

    We are so used to the notion of our own inevitability as life’s dominant species that it is 
hard to grasp that we are here only because of timely extraterrestrial bangs and other random 
flukes. The one thing we have in common with all other living things is that for nearly four 
billion years our ancestors have managed to slip through a series of closing doors every time 
we needed them to. Stephen Jay Gould expressed it succinctly in a well-known line: “Humans 
are here today because our particular line never fractured—never once at any of the billion 
points that could have erased us from history.” 

    We started this chapter with three points: Life wants to be; life doesn’t always want to be 
much; life from time to time goes extinct. To this we may add a fourth: Life goes on. And 
often, as we shall see, it goes on in ways that are decidedly amazing. 



23    THE RICHNESS OF BEING 

 

 

 

 

HERE AND THERE in the Natural History Museum in London, built into recesses along the 
underlit corridors or standing between glass cases of minerals and ostrich eggs and a century 
or so of other productive clutter, are secret doors—at least secret in the sense that there is 
nothing about them to attract the visitor’s notice. Occasionally you might see someone with 
the distracted manner and interestingly willful hair that mark the scholar emerge from one of 
the doors and hasten down a corridor, probably to disappear through another door a little 
further on, but this is a relatively rare event. For the most part the doors stay shut, giving no 
hint that beyond them exists another—a parallel—Natural History Museum as vast as, and in 
many ways more wonderful than, the one the public knows and adores. 

    The Natural History Museum contains some seventy million objects from every realm of 
life and every corner of the planet, with another hundred thousand or so added to the 
collection each year, but it is really only behind the scenes that you get a sense of what a 
treasure house this is. In cupboards and cabinets and long rooms full of close-packed shelves 
are kept tens of thousands of pickled animals in bottles, millions of insects pinned to squares 
of card, drawers of shiny mollusks, bones of dinosaurs, skulls of early humans, endless 
folders of neatly pressed plants. It is a little like wandering through Darwin’s brain. The spirit 
room alone holds fifteen miles of shelving containing jar upon jar of animals preserved in 
methylated spirit. 

    Back here are specimens collected by Joseph Banks in Australia, Alexander von Humboldt 
in Amazonia, Darwin on the Beagle voyage, and much else that is either very rare or 
historically important or both. Many people would love to get their hands on these things. A 
few actually have. In 1954 the museum acquired an outstanding ornithological collection from 
the estate of a devoted collector named Richard Meinertzhagen, author of Birds of Arabia, 
among other scholarly works. Meinertzhagen had been a faithful attendee of the museum for 
years, coming almost daily to take notes for the production of his books and monographs. 
When the crates arrived, the curators excitedly jimmied them open to see what they had been 
left and were surprised, to put it mildly, to discover that a very large number of specimens 
bore the museum’s own labels. Mr. Meinertzhagen, it turned out, had been helping himself to 
their collections for years. It also explained his habit of wearing a large overcoat even during 
warm weather. 

   A few years later a charming old regular in the mollusks department—“quite a distinguished 
gentleman,” I was told—was caught inserting valued seashells into the hollow legs of his 
Zimmer frame. 

    “I don’t suppose there’s anything in here that somebody somewhere doesn’t covet,” 
Richard Fortey said with a thoughtful air as he gave me a tour of the beguiling world that is 
the behind-the-scenes part of the museum. We wandered through a confusion of departments 
where people sat at large tables doing intent, investigative things with arthropods and palm 



fronds and boxes of yellowed bones. Everywhere there was an air of unhurried thoroughness, 
of people being engaged in a gigantic endeavor that could never be completed and mustn’t be 
rushed. In 1967, I had read, the museum issued its report on the John Murray Expedition, an 
Indian Ocean survey, forty-four years after the expedition had concluded. This is a world 
where things move at their own pace, including a tiny lift Fortey and I shared with a scholarly 
looking elderly man with whom Fortey chatted genially and familiarly as we proceeded 
upwards at about the rate that sediments are laid down. 

    When the man departed, Fortey said to me: “That was a very nice chap named Norman 
who’s spent forty-two years studying one species of plant, St. John’s wort. He retired in 1989, 
but he still comes in every week.” 

    “How do you spend forty-two years on one species of plant?” I asked. 

    “It’s remarkable, isn’t it?” Fortey agreed. He thought for a moment. “He’s very thorough 
apparently.” The lift door opened to reveal a bricked-over opening. Fortey looked 
confounded. “That’s very strange,” he said. “That used to be Botany back there.” He punched 
a button for another floor, and we found our way at length to Botany by means of back 
staircases and discreet trespass through yet more departments where investigators toiled 
lovingly over once-living objects. And so it was that I was introduced to Len Ellis and the 
quiet world of bryophytes—mosses to the rest of us. 

  

    When Emerson poetically noted that mosses favor the north sides of trees (“The moss upon 
the forest bark, was pole-star when the night was dark”) he really meant lichens, for in the 
nineteenth century mosses and lichens weren’t distinguished. True mosses aren’t actually 
fussy about where they grow, so they are no good as natural compasses. In fact, mosses aren’t 
actually much good for anything. “Perhaps no great group of plants has so few uses, 
commercial or economic, as the mosses,” wrote Henry S. Conard, perhaps just a touch sadly, 
in How to Know the Mosses and Liverworts, published in 1956 and still to be found on many 
library shelves as almost the only attempt to popularize the subject. 

    They are, however, prolific. Even with lichens removed, bryophytes is a busy realm, with 
over ten thousand species contained within some seven hundred genera. The plump and 
stately Moss Flora of Britain and Ireland by A. J. E. Smith runs to seven hundred pages, and 
Britain and Ireland are by no means outstandingly mossy places. “The tropics are where you 
find the variety,” Len Ellis told me. A quiet, spare man, he has been at the Natural History 
Museum for twenty-seven years and curator of the department since 1990. “You can go out 
into a place like the rain forests of Malaysia and find new varieties with relative ease. I did 
that myself not long ago. I looked down and there was a species that had never been 
recorded.” 

    “So we don’t know how many species are still to be discovered?” 

    “Oh, no. No idea.” 

    You might not think there would be that many people in the world prepared to devote 
lifetimes to the study of something so inescapably low key, but in fact moss people number in 
the hundreds and they feel very strongly about their subject. “Oh, yes,” Ellis told me, “the 
meetings can get very lively at times.” 



    I asked him for an example of controversy. 

    “Well, here’s one inflicted on us by one of your countrymen,” he said, smiling lightly, and 
opened a hefty reference work containing illustrations of mosses whose most notable 
characteristic to the uninstructed eye was their uncanny similarity one to another. “That,” he 
said, tapping a moss, “used to be one genus, Drepanocladus. Now it’s been reorganized into 
three: Drepanocladus, Wamstorfia, and Hamatacoulis.” 

    “And did that lead to blows?” I asked perhaps a touch hopefully. 

    “Well, it made sense. It made perfect sense. But it meant a lot of reordering of collections 
and it put all the books out of date for a time, so there was a bit of, you know, grumbling.” 

    Mosses offer mysteries as well, he told me. One famous case—famous to moss people 
anyway—involved a retiring type called Hyophila stanfordensis, which was discovered on the 
campus of Stanford University in California and later also found growing beside a path in 
Cornwall, on the southwest tip of England, but has never been encountered anywhere in 
between. How it came to exist in two such unconnected locations is anybody’s guess. “It’s 
now known as Hennediella stanfordensis,” Ellis said. “Another revision.” 

    We nodded thoughtfully. 

    When a new moss is found it must be compared with all other mosses to make sure that it 
hasn’t been recorded already. Then a formal description must be written and illustrations 
prepared and the result published in a respectable journal. The whole process seldom takes 
less than six months. The twentieth century was not a great age for moss taxonomy. Much of 
the century’s work was devoted to untangling the confusions and duplications left behind by 
the nineteenth century. 

    That was the golden age of moss collecting. (You may recall that Charles Lyell’s father 
was a great moss man.) One aptly named Englishman, George Hunt, hunted British mosses so 
assiduously that he probably contributed to the extinction of several species. But it is thanks 
to such efforts that Len Ellis’s collection is one of the world’s most comprehensive. All 
780,000 of his specimens are pressed into large folded sheets of heavy paper, some very old 
and covered with spidery Victorian script. Some, for all we knew, might have been in the 
hand of Robert Brown, the great Victorian botanist, unveiler of Brownian motion and the 
nucleus of cells, who founded and ran the museum’s botany department for its first thirty-one 
years until his death in 1858. All the specimens are kept in lustrous old mahogany cabinets so 
strikingly fine that I remarked upon them. 

    “Oh, those were Sir Joseph Banks’s, from his house in Soho Square,” Ellis said casually, as 
if identifying a recent purchase from Ikea. “He had them built to hold his specimens from the 
Endeavour voyage.” He regarded the cabinets thoughtfully, as if for the first time in a long 
while. “I don’t know howwe ended up with them in bryology,” he added. 

    This was an amazing disclosure. Joseph Banks was England’s greatest botanist, and the 
Endeavour voyage—that is the one on which Captain Cook charted the 1769 transit of Venus 
and claimed Australia for the crown, among rather a lot else—was the greatest botanical 
expedition in history. Banks paid £10,000, about $1 million in today’s money, to bring 
himself and a party of nine others—a naturalist, a secretary, three artists, and four servants—
on the three-year adventure around the world. Goodness knows what the bluff Captain Cook 



made of such a velvety and pampered assemblage, but he seems to have liked Banks well 
enough and could not but admire his talents in botany—a feeling shared by posterity. 

    Never before or since has a botanical party enjoyed greater triumphs. Partly it was because 
the voyage took in so many new or little-known places—Tierra del Fuego, Tahiti, New 
Zealand, Australia, New Guinea—but mostly it was because Banks was such an astute and 
inventive collector. Even when unable to go ashore at Rio de Janeiro because of a quarantine, 
he sifted through a bale of fodder sent for the ship’s livestock and made new discoveries. 
Nothing, it seems, escaped his notice. Altogether he brought back thirty thousand plant 
specimens, including fourteen hundred not seen before—enough to increase by about a 
quarter the number of known plants in the world. 

    But Banks’s grand cache was only part of the total haul in what was an almost absurdly 
acquisitive age. Plant collecting in the eighteenth century became a kind of international 
mania. Glory and wealth alike awaited those who could find new species, and botanists and 
adventurers went to the most incredible lengths to satisfy the world’s craving for horticultural 
novelty. Thomas Nuttall, the man who named the wisteria after Caspar Wistar, came to 
America as an uneducated printer but discovered a passion for plants and walked halfway 
across the country and back again, collecting hundreds of growing things never seen before. 
John Fraser, for whom is named the Fraser fir, spent years in the wilderness collecting on 
behalf of Catherine the Great and emerged at length to find that Russia had a new czar who 
thought he was mad and refused to honor his contract. Fraser took everything to Chelsea, 
where he opened a nursery and made a handsome living selling rhododendrons, azaleas, 
magnolias, Virginia creepers, asters, and other colonial exotica to a delighted English gentry. 

    Huge sums could be made with the right finds. John Lyon, an amateur botanist, spent two 
hard and dangerous years collecting specimens, but cleared almost $200,000 in today’s 
money for his efforts. Many, however, just did it for the love of botany. Nuttall gave most of 
what he found to the Liverpool Botanic Gardens. Eventually he became director of Harvard’s 
Botanic Garden and author of the encyclopedicGenera of North American Plants (which he 
not only wrote but also largely typeset). 

    And that was just plants. There was also all the fauna of the new worlds—kangaroos, kiwis, 
raccoons, bobcats, mosquitoes, and other curious forms beyond imagining. The volume of life 
on Earth was seemingly infinite, as Jonathan Swift noted in some famous lines: 

 
    So, naturalists observe, a flea 
    Hath smaller fleas that on him prey; 
    And these have smaller still to bite ’em; 
    And so proceed ad infinitum. 
 

    All this new information needed to be filed, ordered, and compared with what was known. 
The world was desperate for a workable system of classification. Fortunately there was a man 
in Sweden who stood ready to provide it. 

    His name was Carl Linné (later changed, with permission, to the more aristocraticvon 
Linné), but he is remembered now by the Latinized form Carolus Linnaeus. He was born in 
1707 in the village of Råshult in southern Sweden, the son of a poor but ambitious Lutheran 
curate, and was such a sluggish student that his exasperated father apprenticed him (or, by 



some accounts, nearly apprenticed him) to a cobbler. Appalled at the prospect of spending a 
lifetime banging tacks into leather, young Linné begged for another chance, which was 
granted, and he never thereafter wavered from academic distinction. He studied medicine in 
Sweden and Holland, though his passion became the natural world. In the early 1730s, still in 
his twenties, he began to produce catalogues of the world’s plant and animal species, using a 
system of his own devising, and gradually his fame grew. 

    Rarely has a man been more comfortable with his own greatness. He spent much of his 
leisure time penning long and flattering portraits of himself, declaring that there had never 
“been a greater botanist or zoologist,” and that his system of classification was “the greatest 
achievement in the realm of science.” Modestly he suggested that his gravestone should bear 
the inscription Princeps Botanicorum, “Prince of Botanists.” It was never wise to question his 
generous self-assessments. Those who did so were apt to find they had weeds named after 
them. 

    Linnaeus’s other striking quality was an abiding—at times, one might say, a feverish—
preoccupation with sex. He was particularly struck by the similarity between certain bivalves 
and the female pudenda. To the parts of one species of clam he gave the names vulva, labia, 
pubes, anus, and hymen. He grouped plants by the nature of their reproductive organs and 
endowed them with an arrestingly anthropomorphic amorousness. His descriptions of flowers 
and their behavior are full of references to “promiscuous intercourse,” “barren concubines,” 
and “the bridal bed.” In spring, he wrote in one oft-quoted passage: 

 

     Love comes even to the plants. Males and females . . . hold their nuptials . . . 
showing by their sexual organs which are males, which females. The flowers’ 
leaves serve as a bridal bed, which the Creator has so gloriously arranged, adorned 
with such noble bed curtains, and perfumed with so many soft scents that the 
bridegroom with his bride might there celebrate their nuptials with so much the 
greater solemnity. When the bed has thus been made ready, then is the time for the 
bridegroom to embrace his beloved bride and surrender himself to her. 

 

    He named one genus of plants Clitoria. Not surprisingly, many people thought him strange. 
But his system of classification was irresistible. Before Linnaeus, plants were given names 
that were expansively descriptive. The common ground cherry was called Physalis amno 
ramosissime ramis angulosis glabris foliis dentoserratis. Linnaeus lopped it back to Physalis 
angulata, which name it still uses. The plant world was equally disordered by inconsistencies 
of naming. A botanist could not be sure ifRosa sylvestris alba cum rubore, folio glabro was 
the same plant that others called Rosa sylvestris inodora seu canina. Linnaeus solved the 
puzzlement by calling it simply Rosa canina. To make these excisions useful and agreeable to 
all required much more than simply being decisive. It required an instinct—a genius, in fact—
for spotting the salient qualities of a species. 

    The Linnaean system is so well established that we can hardly imagine an alternative, but 
before Linnaeus, systems of classification were often highly whimsical. Animals might be 
categorized by whether they were wild or domesticated, terrestrial or aquatic, large or small, 
even whether they were thought handsome and noble or of no consequence. Buffon arranged 
his animals by their utility to man. Anatomical considerations barely came into it. Linnaeus 



made it his life’s work to rectify this deficiency by classifying all that was alive according to 
its physical attributes. Taxonomy—which is to say the science of classification—has never 
looked back. 

    It all took time, of course. The first edition of his great Systema Naturae in 1735 was just 
fourteen pages long. But it grew and grew until by the twelfth edition—the last that Linnaeus 
would live to see—it extended to three volumes and 2,300 pages. In the end he named or 
recorded some 13,000 species of plant and animal. Other works were more comprehensive—
John Ray’s three-volume Historia Generalis Plantarum in England, completed a generation 
earlier, covered no fewer than 18,625 species of plants alone—but what Linnaeus had that no 
one else could touch were consistency, order, simplicity, and timeliness. Though his work 
dates from the 1730s, it didn’t become widely known in England until the 1760s, just in time 
to make Linnaeus a kind of father figure to British naturalists. Nowhere was his system 
embraced with greater enthusiasm (which is why, for one thing, the Linnaean Society has its 
home in London and not Stockholm). 

    Linnaeus was not flawless. He made room for mythical beasts and “monstrous humans” 
whose descriptions he gullibly accepted from seamen and other imaginative travelers. Among 
these were a wild man, Homo ferus, who walked on all fours and had not yet mastered the art 
of speech, and Homo caudatus, “man with a tail.” But then it was, as we should not forget, an 
altogether more credulous age. Even the great Joseph Banks took a keen and believing interest 
in a series of reported sightings of mermaids off the Scottish coast at the end of the eighteenth 
century. For the most part, however, Linnaeus’s lapses were offset by sound and often 
brilliant taxonomy. Among other accomplishments, he saw that whales belonged with cows, 
mice, and other common terrestrial animals in the order Quadrupedia (later changed to 
Mammalia), which no one had done before. 

    In the beginning, Linnaeus intended only to give each plant a genus name and a number—
Convolvulus 1, Convolvulus 2,and so on—but soon realized that that was unsatisfactory and 
hit on the binomial arrangement that remains at the heart of the system to this day. The 
intention originally was to use the binomial system for everything—rocks, minerals, diseases, 
winds, whatever existed in nature. Not everyone embraced the system warmly. Many were 
disturbed by its tendency toward indelicacy, which was slightly ironic as before Linnaeus the 
common names of many plants and animals had been heartily vulgar. The dandelion was long 
popularly known as the “pissabed” because of its supposed diuretic properties, and other 
names in everyday use included mare’s fart, naked ladies, twitch-ballock, hound’s piss, open 
arse, and bum-towel. One or two of these earthy appellations may unwittingly survive in 
English yet. The “maidenhair” in maidenhair moss, for instance, does not refer to the hair on 
the maiden’s head. At all events, it had long been felt that the natural sciences would be 
appreciably dignified by a dose of classical renaming, so there was a certain dismay in 
discovering that the self-appointed Prince of Botany had sprinkled his texts with such 
designations asClitoria, Fornicata, andVulva. 

    Over the years many of these were quietly dropped (though not all: the common slipper 
limpet still answers on formal occasions to Crepidula fornicata) and many other refinements 
introduced as the needs of the natural sciences grew more specialized. In particular the system 
was bolstered by the gradual introduction of additional hierarchies.Genus (pluralgenera) and 
species had been employed by naturalists for over a hundred years before Linnaeus, and 
order, class, and family in their biological senses all came into use in the 1750s and 1760s. 
But phylum wasn’t coined until 1876 (by the German Ernst Haeckel), and family and order 



were treated as interchangeable until early in the twentieth century. For a time zoologists used 
family where botanists placed order, to the occasional confusion of nearly everyone.1  

    Linnaeus had divided the animal world into six categories: mammals, reptiles, birds, fishes, 
insects, and “vermes,” or worms, for everything that didn’t fit into the first five. From the 
outset it was evident that putting lobsters and shrimp into the same category as worms was 
unsatisfactory, and various new categories such as Mollusca and Crustacea were created. 
Unfortunately these new classifications were not uniformly applied from nation to nation. In 
an attempt to reestablish order, the British in 1842 proclaimed a new set of rules called the 
Stricklandian Code, but the French saw this as highhanded, and the Société Zoologique 
countered with its own conflicting code. Meanwhile, the American Ornithological Society, for 
obscure reasons, decided to use the 1758 edition of Systema Naturae as the basis for all its 
naming, rather than the 1766 edition used elsewhere, which meant that many American birds 
spent the nineteenth century logged in different genera from their avian cousins in Europe. 
Not until 1902, at an early meeting of the International Congress of Zoology, did naturalists 
begin at last to show a spirit of compromise and adopt a universal code. 

  

    Taxonomy is described sometimes as a science and sometimes as an art, but really it’s a 
battleground. Even today there is more disorder in the system than most people realize. Take 
the category of the phylum, the division that describes the basic body plans of all organisms. 
A few phyla are generally well known, such as mollusks (the home of clams and snails), 
arthropods (insects and crustaceans), and chordates (us and all other animals with a backbone 
or protobackbone), though things then move swiftly in the direction of obscurity. Among the 
latter we might list Gnathostomulida (marine worms), Cnidaria (jellyfish, medusae, 
anemones, and corals), and the delicate Priapulida (or little “penis worms”). Familiar or not, 
these are elemental divisions. Yet there is surprisingly little agreement on how many phyla 
there are or ought to be. Most biologists fix the total at about thirty, but some opt for a number 
in the low twenties, while Edward O. Wilson in The Diversity of Life puts the number at a 
surprisingly robust eighty-nine. It depends on where you decide to make your divisions—
whether you are a “lumper” or a “splitter,” as they say in the biological world. 

    At the more workaday level of species, the possibilities for disagreements are even greater. 
Whether a species of grass should be called Aegilops incurva, Aegilops incurvata, or Aegilops 
ovata may not be a matter that would stir many nonbotanists to passion, but it can be a source 
of very lively heat in the right quarters. The problem is that there are five thousand species of 
grass and many of them look awfully alike even to people who know grass. In consequence, 
some species have been found and named at least twenty times, and there are hardly any, it 
appears, that haven’t been independently identified at least twice. The two-volume Manual of 
the Grasses of the United States devotes two hundred closely typeset pages to sorting out all 
the synonymies, as the biological world refers to its inadvertent but quite common 
duplications. And that is just for the grasses of a single country. 

    To deal with disagreements on the global stage, a body known as the International 
Association for Plant Taxonomy arbitrates on questions of priority and duplication. At 

                                                 
1 To illustrate, humans are in the domain eucarya, in the kingdom animalia, in the phylum chordata, in the 
subphylum vertebrata, in the class mammalia, in the order primates, in the family hominidae, in the genus homo, 
in the species sapiens. (The convention, I'm informed, is to italicize genus and species names, but not those of 
higher divisions.) Some taxonomists employ further subdivisions: tribe, suborder, infraorder, parvorder, and 
more. 



intervals it hands down decrees, declaring that Zauschneria californica (a common plant in 
rock gardens) is to be known henceforth as Epilobium canum or that Aglaothamnion 
tenuissimum may now be regarded as conspecific with Aglaothamnion byssoides, but not 
withAglaothamnion pseudobyssoides. Normally these are small matters of tidying up that 
attract little notice, but when they touch on beloved garden plants, as they sometimes do, 
shrieks of outrage inevitably follow. In the late 1980s the common chrysanthemum was 
banished (on apparently sound scientific principles) from the genus of the same name and 
relegated to the comparatively drab and undesirable world of the genus Dendranthema. 

    Chrysanthemum breeders are a proud and numerous lot, and they protested to the real if 
improbable-sounding Committee on Spermatophyta. (There are also committees for 
Pteridophyta, Bryophyta, and Fungi, among others, all reporting to an executive called the 
Rapporteur-Général; this is truly an institution to cherish.) Although the rules of nomenclature 
are supposed to be rigidly applied, botanists are not indifferent to sentiment, and in 1995 the 
decision was reversed. Similar adjudications have saved petunias, euonymus, and a popular 
species of amaryllis from demotion, but not many species of geraniums, which some years 
ago were transferred, amid howls, to the genus Pelargonium. The disputes are entertainingly 
surveyed in Charles Elliott’s The Potting-Shed Papers. 

    Disputes and reorderings of much the same type can be found in all the other realms of the 
living, so keeping an overall tally is not nearly as straightforward a matter as you might 
suppose. In consequence, the rather amazing fact is that we don’t have the faintest idea—“not 
even to the nearest order of magnitude,” in the words of Edward O. Wilson—of the number of 
things that live on our planet. Estimates range from 3 million to 200 million. More 
extraordinary still, according to a report in the Economist, as much as 97 percent of the 
world’s plant and animal species may still await discovery. 

    Of the organisms that we do know about, more than 99 in 100 are only sketchily 
described—“a scientific name, a handful of specimens in a museum, and a few scraps of 
description in scientific journals” is how Wilson describes the state of our knowledge. In The 
Diversity of Life, he estimated the number of known species of all types—plants, insects, 
microbes, algae, everything—at 1.4 million, but added that that was just a guess. Other 
authorities have put the number of known species slightly higher, at around 1.5 million to 1.8 
million, but there is no central registry of these things, so nowhere to check numbers. In short, 
the remarkable position we find ourselves in is that we don’t actually know what we actually 
know. 

    In principle you ought to be able to go to experts in each area of specialization, ask how 
many species there are in their fields, then add the totals. Many people have in fact done so. 
The problem is that seldom do any two come up with matching figures. Some sources put the 
number of known types of fungi at 70,000, others at 100,000—nearly half as many again. You 
can find confident assertions that the number of described earthworm species is 4,000 and 
equally confident assertions that the figure is 12,000. For insects, the numbers run from 
750,000 to 950,000 species. These are, you understand, supposedly the known number of 
species. For plants, the commonly accepted numbers range from 248,000 to 265,000. That 
may not seem too vast a discrepancy, but it’s more than twenty times the number of flowering 
plants in the whole of North America. 

    Putting things in order is not the easiest of tasks. In the early 1960s, Colin Groves of the 
Australian National University began a systematic survey of the 250-plus known species of 
primate. Oftentimes it turned out that the same species had been described more than once—



sometimes several times—without any of the discoverers realizing that they were dealing with 
an animal that was already known to science. It took Groves four decades to untangle 
everything, and that was with a comparatively small group of easily distinguished, generally 
noncontroversial creatures. Goodness knows what the results would be if anyone attempted a 
similar exercise with the planet’s estimated 20,000 types of lichens, 50,000 species of 
mollusk, or 400,000-plus beetles. 

    What is certain is that there is a great deal of life out there, though the actual quantities are 
necessarily estimates based on extrapolations—sometimes exceedingly expansive 
extrapolations. In a well-known exercise in the 1980s, Terry Erwin of the Smithsonian 
Institution saturated a stand of nineteen rain forest trees in Panama with an insecticide fog, 
then collected everything that fell into his nets from the canopy. Among his haul (actually 
hauls, since he repeated the experiment seasonally to make sure he caught migrant species) 
were 1,200 types of beetle. Based on the distribution of beetles elsewhere, the number of 
other tree species in the forest, the number of forests in the world, the number of other insect 
types, and so on up a long chain of variables, he estimated a figure of 30 million species of 
insects for the entire planet—a figure he later said was too conservative. Others using the 
same or similar data have come up with figures of 13 million, 80 million, or 100 million 
insect types, underlining the conclusion that however carefully arrived at, such figures 
inevitably owe at least as much to supposition as to science. 

  

    According to the Wall Street Journal, the world has “about 10,000 active taxonomists”—
not a great number when you consider how much there is to be recorded. But, the Journal 
adds, because of the cost (about $2,000 per species) and paperwork, only about fifteen 
thousand new species of all types are logged per year. 

    “It’s not a biodiversity crisis, it’s a taxonomist crisis!” barks Koen Maes, Belgian-born 
head of invertebrates at the Kenyan National Museum in Nairobi, whom I met briefly on a 
visit to the country in the autumn of 2002. There were no specialized taxonomists in the 
whole of Africa, he told me. “There was one in the Ivory Coast, but I think he has retired,” he 
said. It takes eight to ten years to train a taxonomist, but none are coming along in Africa. 
“They are the real fossils,” Maes added. He himself was to be let go at the end of the year, he 
said. After seven years in Kenya, his contract was not being renewed. “No funds,” Maes 
explained. 

    Writing in the journal Nature last year, the British biologist G. H. Godfray noted that there 
is a chronic “lack of prestige and resources” for taxonomists everywhere. In consequence, 
“many species are being described poorly in isolated publications, with no attempt to relate a 
new taxon2to existing species and classifications.” Moreover, much of taxonomists’ time is 
taken up not with describing new species but simply with sorting out old ones. Many, 
according to Godfray, “spend most of their career trying to interpret the work of nineteenth-
century systematicists: deconstructing their often inadequate published descriptions or 
scouring the world’s museums for type material that is often in very poor condition.” Godfray 
particularly stresses the absence of attention being paid to the systematizing possibilities of 
the Internet. The fact is that taxonomy by and large is still quaintly wedded to paper. 

                                                 
2 The formal word for a zoological category, such as phylum or genus. The plural is taxa. 
 



    In an attempt to haul things into the modern age, in 2001 Kevin Kelly, cofounder of Wired 
magazine, launched an enterprise called the All Species Foundation with the aim of finding 
every living organism and recording it on a database. The cost of such an exercise has been 
estimated at anywhere from $2 billion to as much as $50 billion. As of the spring of 2002, the 
foundation had just $1.2 million in funds and four full-time employees. If, as the numbers 
suggest, we have perhaps 100 million species of insects yet to find, and if our rates of 
discovery continue at the present pace, we should have a definitive total for insects in a little 
over fifteen thousand years. The rest of the animal kingdom may take a little longer. 

    So why do we know as little as we do? There are nearly as many reasons as there are 
animals left to count, but here are a few of the principal causes: 

    Most living things are small and easily overlooked.In practical terms, this is not always a 
bad thing. You might not slumber quite so contentedly if you were aware that your mattress is 
home to perhaps two million microscopic mites, which come out in the wee hours to sup on 
your sebaceous oils and feast on all those lovely, crunchy flakes of skin that you shed as you 
doze and toss. Your pillow alone may be home to forty thousand of them. (To them your head 
is just one large oily bon-bon.) And don’t think a clean pillowcase will make a difference. To 
something on the scale of bed mites, the weave of the tightest human fabric looks like ship’s 
rigging. Indeed, if your pillow is six years old—which is apparently about the average age for 
a pillow—it has been estimated that one-tenth of its weight will be made up of “sloughed 
skin, living mites, dead mites and mite dung,” to quote the man who did the measuring, Dr. 
John Maunder of the British Medical Entomology Center. (But at least they areyour mites. 
Think of what you snuggle up with each time you climb into a motel bed.)3 These mites have 
been with us since time immemorial, but they weren’t discovered until 1965. 

    If creatures as intimately associated with us as bed mites escaped our notice until the age of 
color television, it’s hardly surprising that most of the rest of the small-scale world is barely 
known to us. Go out into a woods—any woods at all—bend down and scoop up a handful of 
soil, and you will be holding up to 10 billion bacteria, most of them unknown to science. Your 
sample will also contain perhaps a million plump yeasts, some 200,000 hairy little fungi 
known as molds, perhaps 10,000 protozoans (of which the most familiar is the amoeba), and 
assorted rotifers, flatworms, roundworms, and other microscopic creatures known collectively 
as cryptozoa. A large portion of these will also be unknown. 

    The most comprehensive handbook of microorganisms, Bergey’s Manual of Systematic 
Bacteriology, lists about 4,000 types of bacteria. In the 1980s, a pair of Norwegian scientists, 
Jostein Goksøyr and Vigdis Torsvik, collected a gram of random soil from a beech forest near 
their lab in Bergen and carefully analyzed its bacterial content. They found that this single 
small sample contained between 4,000 and 5,000 separate bacterial species, more than in the 
whole of Bergey’s Manual. They then traveled to a coastal location a few miles away, 
scooped up another gram of earth, and found that it contained 4,000 to 5,000 other species. As 
Edward O. Wilson observes: “If over 9,000 microbial types exist in two pinches of substrate 
from two localities in Norway, how many more await discovery in other, radically different 
habitats?” Well, according to one estimate, it could be as high as 400 million. 

 

                                                 
3 We are actually getting worse at some matters of hygiene. Dr. Maunder believes that the move toward low-
temperature washing machine detergents has encouraged bugs to proliferate. As he puts it: "If you wash lousy 
clothing at low temperatures, all you get is cleaner lice." 



    We don’t look in the right places. In The Diversity of Life, Wilson describes how one 
botanist spent a few days tramping around ten hectares of jungle in Borneo and discovered a 
thousand new species of flowering plant—more than are found in the whole of North 
America. The plants weren’t hard to find. It’s just that no one had looked there before. Koen 
Maes of the Kenyan National Museum told me that he went to one cloud forest, as 
mountaintop forests are known in Kenya, and in a half hour “of not particularly dedicated 
looking” found four new species of millipedes, three representing new genera, and one new 
species of tree. “Big tree,” he added, and shaped his arms as if about to dance with a very 
large partner. Cloud forests are found on the tops of plateaus and have sometimes been 
isolated for millions of years. “They provide the ideal climate for biology and they have 
hardly been studied,” he said. 

    Overall, tropical rain forests cover only about 6 percent of Earth’s surface, but harbor more 
than half of its animal life and about two-thirds of its flowering plants, and most of this life 
remains unknown to us because too few researchers spend time in them. Not incidentally, 
much of this could be quite valuable. At least 99 percent of flowering plants have never been 
tested for their medicinal properties. Because they can’t flee from predators, plants have had 
to contrive chemical defenses, and so are particularly enriched in intriguing compounds. Even 
now nearly a quarter of all prescribed medicines are derived from just forty plants, with 
another 16 percent coming from animals or microbes, so there is a serious risk with every 
hectare of forest felled of losing medically vital possibilities. Using a method called 
combinatorial chemistry, chemists can generate forty thousand compounds at a time in labs, 
but these products are random and not uncommonly useless, whereas any natural molecule 
will have already passed what the Economist calls “the ultimate screening programme: over 
three and a half billion years of evolution.” 

    Looking for the unknown isn’t simply a matter of traveling to remote or distant places, 
however. In his book Life: An Unauthorised Biography, Richard Fortey notes how one 
ancient bacterium was found on the wall of a country pub “where men had urinated for 
generations”—a discovery that would seem to involve rare amounts of luckand devotion and 
possibly some other quality not specified. 

 

    There aren’t enough specialists.The stock of things to be found, examined, and recorded 
very much outruns the supply of scientists available to do it. Take the hardy and little-known 
organisms known as bdelloid rotifers. These are microscopic animals that can survive almost 
anything. When conditions are tough, they curl up into a compact shape, switch off their 
metabolism, and wait for better times. In this state, you can drop them into boiling water or 
freeze them almost to absolute zero—that is the level where even atoms give up—and, when 
this torment has finished and they are returned to a more pleasing environment, they will 
uncurl and move on as if nothing has happened. So far, about 500 species have been identified 
(though other sources say 360), but nobody has any idea, even remotely, how many there may 
be altogether. For years almost all that was known about them was thanks to the work of a 
devoted amateur, a London clerical worker named David Bryce who studied them in his spare 
time. They can be found all over the world, but you could have all the bdelloid rotifer experts 
in the world to dinner and not have to borrow plates from the neighbors. 

    Even something as important and ubiquitous as fungi—and fungi are both—attracts 
comparatively little notice. Fungi are everywhere and come in many forms—as mushrooms, 
molds, mildews, yeasts, and puffballs, to name but a sampling—and they exist in volumes 



that most of us little suspect. Gather together all the fungi found in a typical acre of meadow 
and you would have 2,500 pounds of the stuff. These are not marginal organisms. Without 
fungi there would be no potato blights, Dutch elm disease, jock itch, or athlete’s foot, but also 
no yogurts or beers or cheeses. Altogether about 70,000 species of fungi have been identified, 
but it is thought the number could be as high as 1.8 million. A lot of mycologists work in 
industry, making cheeses and yogurts and the like, so it is hard to say how many are actively 
involved in research, but we can safely take it that there are more species of fungi to be found 
than there are people to find them. 

 

    The world is a really big place.We have been gulled by the ease of air travel and other 
forms of communication into thinking that the world is not all that big, but at ground level, 
where researchers must work, it is actually enormous—enormous enough to be full of 
surprises. The okapi, the nearest living relative of the giraffe, is now known to exist in 
substantial numbers in the rain forests of Zaire—the total population is estimated at perhaps 
thirty thousand—yet its existence wasn’t even suspected until the twentieth century. The large 
flightless New Zealand bird called the takahe had been presumed extinct for two hundred 
years before being found living in a rugged area of the country’s South Island. In 1995 a team 
of French and British scientists in Tibet, who were lost in a snowstorm in a remote valley, 
came across a breed of horse, called the Riwoche, that had previously been known only from 
prehistoric cave drawings. The valley’s inhabitants were astonished to learn that the horse was 
considered a rarity in the wider world. 

    Some people think even greater surprises may await us. “A leading British ethno-
biologist,” wrote the Economist in 1995, “thinks a megatherium, a sort of giant ground sloth 
which may stand as high as a giraffe . . . may lurk in the fastnesses of the Amazon basin.” 
Perhaps significantly, the ethnobiologist wasn’t named; perhaps even more significantly, 
nothing more has been heard of him or his giant sloth. No one, however, can categorically say 
that no such thing is there until every jungly glade has been investigated, and we are a long 
way from achieving that. 

    But even if we groomed thousands of fieldworkers and dispatched them to the farthest 
corners of the world, it would not be effort enough, for wherever life can be, it is. Life’s 
extraordinary fecundity is amazing, even gratifying, but also problematic. To survey it all, you 
would have to turn over every rock, sift through the litter on every forest floor, sieve 
unimaginable quantities of sand and dirt, climb into every forest canopy, and devise much 
more efficient ways to examine the seas. Even then you would overlook whole ecosystems. In 
the 1980s, spelunkers entered a deep cave in Romania that had been sealed off from the 
outside world for a long but unknown period and found thirty-three species of insects and 
other small creatures—spiders, centipedes, lice—all blind, colorless, and new to science. 
They were living off the microbes in the surface scum of pools, which in turn were feeding on 
hydrogen sulfide from hot springs. 

    Our instinct may be to see the impossibility of tracking everything down as frustrating, 
dispiriting, perhaps even appalling, but it can just as well be viewed as almost unbearably 
exciting. We live on a planet that has a more or less infinite capacity to surprise. What 
reasoning person could possibly want it any other way? 

    What is nearly always most arresting in any ramble through the scattered disciplines of 
modern science is realizing how many people have been willing to devote lifetimes to the 



most sumptuously esoteric lines of inquiry. In one of his essays, Stephen Jay Gould notes how 
a hero of his named Henry Edward Crampton spent fifty years, from 1906 to his death in 
1956, quietly studying a genus of land snails in Polynesia called Partula. Over and over, year 
after year, Crampton measured to the tiniest degree—to eight decimal places—the whorls and 
arcs and gentle curves of numberless Partula, compiling the results into fastidiously detailed 
tables. A single line of text in a Crampton table could represent weeks of measurement and 
calculation. 

    Only slightly less devoted, and certainly more unexpected, was Alfred C. Kinsey, who 
became famous for his studies of human sexuality in the 1940s and 1950s. But before his 
mind became filled with sex, so to speak, Kinsey was an entomologist, and a dogged one at 
that. In one expedition lasting two years, he hiked 2,500 miles to assemble a collection of 
300,000 wasps. How many stings he collected along the way is not, alas, recorded. 

    Something that had been puzzling me was the question of how you assured a chain of 
succession in these arcane fields. Clearly there cannot be many institutions in the world that 
require or are prepared to support specialists in barnacles or Pacific snails. As we parted at the 
Natural History Museum in London, I asked Richard Fortey how science ensures that when 
one person goes there’s someone ready to take his place. 

    He chuckled rather heartily at my naiveté. “I’m afraid it’s not as if we have substitutes 
sitting on the bench somewhere waiting to be called in to play. When a specialist retires or, 
even more unfortunately, dies, that can bring a stop to things in that field, sometimes for a 
very long while.” 

    “And I suppose that’s why you value someone who spends forty-two years studying a 
single species of plant, even if it doesn’t produce anything terribly new?” 

    “Precisely,” he said, “precisely.” And he really seemed to mean it. 



24    CELLS 

 

 

 

 

IT STARTS WITH a single cell. The first cell splits to become two and the two become four 
and so on. After just forty-seven doublings, you have ten thousand trillion 
(10,000,000,000,000,000) cells in your body and are ready to spring forth as a human being.1 
And every one of those cells knows exactly what to do to preserve and nurture you from the 
moment of conception to your last breath. 

    You have no secrets from your cells. They know far more about you than you do. Each one 
carries a copy of the complete genetic code—the instruction manual for your body—so it 
knows not only how to do its job but every other job in the body. Never in your life will you 
have to remind a cell to keep an eye on its adenosine triphosphate levels or to find a place for 
the extra squirt of folic acid that’s just unexpectedly turned up. It will do that for you, and 
millions more things besides. 

    Every cell in nature is a thing of wonder. Even the simplest are far beyond the limits of 
human ingenuity. To build the most basic yeast cell, for example, you would have to 
miniaturize about the same number of components as are found in a Boeing 777 jetliner and 
fit them into a sphere just five microns across; then somehow you would have to persuade that 
sphere to reproduce. 

    But yeast cells are as nothing compared with human cells, which are not just more varied 
and complicated, but vastly more fascinating because of their complex interactions. 

    Your cells are a country of ten thousand trillion citizens, each devoted in some intensively 
specific way to your overall well-being. There isn’t a thing they don’t do for you. They let 
you feel pleasure and form thoughts. They enable you to stand and stretch and caper. When 
you eat, they extract the nutrients, distribute the energy, and carry off the wastes—all those 
things you learned about in junior high school biology—but they also remember to make you 
hungry in the first place and reward you with a feeling of well-being afterward so that you 
won’t forget to eat again. They keep your hair growing, your ears waxed, your brain quietly 
purring. They manage every corner of your being. They will jump to your defense the instant 
you are threatened. They will unhesitatingly die for you—billions of them do so daily. And 
not once in all your years have you thanked even one of them. So let us take a moment now to 
regard them with the wonder and appreciation they deserve. 

    We understand a little of how cells do the things they do—how they lay down fat or 
manufacture insulin or engage in many of the other acts necessary to maintain a complicated 
entity like yourself—but only a little. You have at least 200,000 different types of protein 

                                                 
1 Actually, quite a lot of cells are lost in the process of development, so the number you emerge with is really 
just a guess. Depending on which source you consult the number can vary by several orders of magnitude. The 
figure of ten thousand trillion (or quadrillion) is from Margulis and Sagan, 1986. 



laboring away inside you, and so far we understand what no more than about 2 percent of 
them do. (Others put the figure at more like 50 percent; it depends, apparently, on what you 
mean by “understand.”) 

    Surprises at the cellular level turn up all the time. In nature, nitric oxide is a formidable 
toxin and a common component of air pollution. So scientists were naturally a little surprised 
when, in the mid-1980s, they found it being produced in a curiously devoted manner in 
human cells. Its purpose was at first a mystery, but then scientists began to find it all over the 
place—controlling the flow of blood and the energy levels of cells, attacking cancers and 
other pathogens, regulating the sense of smell, even assisting in penile erections. It also 
explained why nitroglycerine, the well-known explosive, soothes the heart pain known as 
angina. (It is converted into nitric oxide in the bloodstream, relaxing the muscle linings of 
vessels, allowing blood to flow more freely.) In barely the space of a decade this one gassy 
substance went from extraneous toxin to ubiquitous elixir. 

    You possess “some few hundred” different types of cell, according to the Belgian 
biochemist Christian de Duve, and they vary enormously in size and shape, from nerve cells 
whose filaments can stretch to several feet to tiny, disc-shaped red blood cells to the rod-
shaped photocells that help to give us vision. They also come in a sumptuously wide range of 
sizes—nowhere more strikingly than at the moment of conception, when a single beating 
sperm confronts an egg eighty-five thousand times bigger than it (which rather puts the notion 
of male conquest into perspective). On average, however, a human cell is about twenty 
microns wide—that is about two hundredths of a millimeter—which is too small to be seen 
but roomy enough to hold thousands of complicated structures like mitochondria, and millions 
upon millions of molecules. In the most literal way, cells also vary in liveliness. Your skin 
cells are all dead. It’s a somewhat galling notion to reflect that every inch of your surface is 
deceased. If you are an average-sized adult you are lugging around about five pounds of dead 
skin, of which several billion tiny fragments are sloughed off each day. Run a finger along a 
dusty shelf and you are drawing a pattern very largely in old skin. 

    Most living cells seldom last more than a month or so, but there are some notable 
exceptions. Liver cells can survive for years, though the components within them may be 
renewed every few days. Brain cells last as long as you do. You are issued a hundred billion 
or so at birth, and that is all you are ever going to get. It has been estimated that you lose five 
hundred of them an hour, so if you have any serious thinking to do there really isn’t a moment 
to waste. The good news is that the individual components of your brain cells are constantly 
renewed so that, as with the liver cells, no part of them is actually likely to be more than about 
a month old. Indeed, it has been suggested that there isn’t a single bit of any of us—not so 
much as a stray molecule—that was part of us nine years ago. It may not feel like it, but at the 
cellular level we are all youngsters. 

    The first person to describe a cell was Robert Hooke, whom we last encountered 
squabbling with Isaac Newton over credit for the invention of the inverse square law. Hooke 
achieved many things in his sixty-eight years—he was both an accomplished theoretician and 
a dab hand at making ingenious and useful instruments—but nothing he did brought him 
greater admiration than his popular book Microphagia: or Some Physiological Descriptions of 
Miniature Bodies Made by Magnifying Glasses, produced in 1665. It revealed to an enchanted 
public a universe of the very small that was far more diverse, crowded, and finely structured 
than anyone had ever come close to imagining. 



    Among the microscopic features first identified by Hooke were little chambers in plants 
that he called “cells” because they reminded him of monks’ cells. Hooke calculated that a 
one-inch square of cork would contain 1,259,712,000 of these tiny chambers—the first 
appearance of such a very large number anywhere in science. Microscopes by this time had 
been around for a generation or so, but what set Hooke’s apart were their technical 
supremacy. They achieved magnifications of thirty times, making them the last word in 
seventeenth-century optical technology. 

    So it came as something of a shock when just a decade later Hooke and the other members 
of London’s Royal Society began to receive drawings and reports from an unlettered linen 
draper in Holland employing magnifications of up to 275 times. The draper’s name was 
Antoni van Leeuwenhoek. Though he had little formal education and no background in 
science, he was a perceptive and dedicated observer and a technical genius. 

    To this day it is not known how he got such magnificent magnifications from simple 
handheld devices, which were little more than modest wooden dowels with a tiny bubble of 
glass embedded in them, far more like magnifying glasses than what most of us think of as 
microscopes, but really not much like either. Leeuwenhoek made a new instrument for every 
experiment he performed and was extremely secretive about his techniques, though he did 
sometimes offer tips to the British on how they might improve their resolutions.2  

    Over a period of fifty years—beginning, remarkably enough, when he was already past 
forty—he made almost two hundred reports to the Royal Society, all written in Low Dutch, 
the only tongue of which he was master. Leeuwenhoek offered no interpretations, but simply 
the facts of what he had found, accompanied by exquisite drawings. He sent reports on almost 
everything that could be usefully examined—bread mold, a bee’s stinger, blood cells, teeth, 
hair, his own saliva, excrement, and semen (these last with fretful apologies for their unsavory 
nature)—nearly all of which had never been seen microscopically before. 

    After he reported finding “animalcules” in a sample of pepper water in 1676, the members 
of the Royal Society spent a year with the best devices English technology could produce 
searching for the “little animals” before finally getting the magnification right. What 
Leeuwenhoek had found were protozoa. He calculated that there were 8,280,000 of these tiny 
beings in a single drop of water—more than the number of people in Holland. The world 
teemed with life in ways and numbers that no one had previously suspected. 

    Inspired by Leeuwenhoek’s fantastic findings, others began to peer into microscopes with 
such keenness that they sometimes found things that weren’t in fact there. One respected 
Dutch observer, Nicolaus Hartsoecker, was convinced he saw “tiny preformed men” in sperm 
cells. He called the little beings “homunculi” and for some time many people believed that all 
humans—indeed, all creatures—were simply vastly inflated versions of tiny but complete 
precursor beings. Leeuwenhoek himself occasionally got carried away with his enthusiasms. 
In one of his least successful experiments he tried to study the explosive properties of 
gunpowder by observing a small blast at close range; he nearly blinded himself in the process. 

                                                 
2 Leeuwenhoek was close friends with another Delft notable, the artist Jan Vermeer. In the mid-1660s, Vermeer, 
who previously had been a competent but not outstanding artist, suddenly developed the mastery of light and 
perspective for which he has been celebrated ever since. Though it has never been proved, it has long been 
suspected that he used a camera obscura, a device for projecting images onto a flat surface through a lens. No 
such device was listed among Vermeer's personal effects after his death, but it happens that the executor of 
Vermeer's estate was none other than Antoni van Leeuwenhoek, the most secretive lens-maker of his day. 
 



    In 1683 Leeuwenhoek discovered bacteria, but that was about as far as progress could get 
for the next century and a half because of the limitations of microscope technology. Not until 
1831 would anyone first see the nucleus of a cell—it was found by the Scottish botanist 
Robert Brown, that frequent but always shadowy visitor to the history of science. Brown, who 
lived from 1773 to 1858, called it nucleus from the Latin nucula, meaning little nut or kernel. 
Not until 1839, however, did anyone realize that all living matter is cellular. It was Theodor 
Schwann, a German, who had this insight, and it was not only comparatively late, as scientific 
insights go, but not widely embraced at first. It wasn’t until the 1860s, and some landmark 
work by Louis Pasteur in France, that it was shown conclusively that life cannot arise 
spontaneously but must come from preexisting cells. The belief became known as the “cell 
theory,” and it is the basis of all modern biology. 

    The cell has been compared to many things, from “a complex chemical refinery” (by the 
physicist James Trefil) to “a vast, teeming metropolis” (the biochemist Guy Brown). A cell is 
both of those things and neither. It is like a refinery in that it is devoted to chemical activity 
on a grand scale, and like a metropolis in that it is crowded and busy and filled with 
interactions that seem confused and random but clearly have some system to them. But it is a 
much more nightmarish place than any city or factory that you have ever seen. To begin with 
there is no up or down inside the cell (gravity doesn’t meaningfully apply at the cellular 
scale), and not an atom’s width of space is unused. There is activity every where and a 
ceaseless thrum of electrical energy. You may not feel terribly electrical, but you are. The 
food we eat and the oxygen we breathe are combined in the cells into electricity. The reason 
we don’t give each other massive shocks or scorch the sofa when we sit is that it is all 
happening on a tiny scale: a mere 0.1 volts traveling distances measured in nanometers. 
However, scale that up and it would translate as a jolt of twenty million volts per meter, about 
the same as the charge carried by the main body of a thunderstorm. 

    Whatever their size or shape, nearly all your cells are built to fundamentally the same plan: 
they have an outer casing or membrane, a nucleus wherein resides the necessary genetic 
information to keep you going, and a busy space between the two called the cytoplasm. The 
membrane is not, as most of us imagine it, a durable, rubbery casing, something that you 
would need a sharp pin to prick. Rather, it is made up of a type of fatty material known as a 
lipid, which has the approximate consistency “of a light grade of machine oil,” to quote 
Sherwin B. Nuland. If that seems surprisingly insubstantial, bear in mind that at the 
microscopic level things behave differently. To anything on a molecular scale water becomes 
a kind of heavy-duty gel, and a lipid is like iron. 

    If you could visit a cell, you wouldn’t like it. Blown up to a scale at which atoms were 
about the size of peas, a cell itself would be a sphere roughly half a mile across, and supported 
by a complex framework of girders called the cytoskeleton. Within it, millions upon millions 
of objects—some the size of basketballs, others the size of cars—would whiz about like 
bullets. There wouldn’t be a place you could stand without being pummeled and ripped 
thousands of times every second from every direction. Even for its full-time occupants the 
inside of a cell is a hazardous place. Each strand of DNA is on average attacked or damaged 
once every 8.4 seconds—ten thousand times in a day—by chemicals and other agents that 
whack into or carelessly slice through it, and each of these wounds must be swiftly stitched up 
if the cell is not to perish. 

    The proteins are especially lively, spinning, pulsating, and flying into each other up to a 
billion times a second. Enzymes, themselves a type of protein, dash everywhere, performing 
up to a thousand tasks a second. Like greatly speeded up worker ants, they busily build and 



rebuild molecules, hauling a piece off this one, adding a piece to that one. Some monitor 
passing proteins and mark with a chemical those that are irreparably damaged or flawed. Once 
so selected, the doomed proteins proceed to a structure called a proteasome, where they are 
stripped down and their components used to build new proteins. Some types of protein exist 
for less than half an hour; others survive for weeks. But all lead existences that are 
inconceivably frenzied. As de Duve notes, “The molecular world must necessarily remain 
entirely beyond the powers of our imagination owing to the incredible speed with which 
things happen in it.” 

    But slow things down, to a speed at which the interactions can be observed, and things 
don’t seem quite so unnerving. You can see that a cell is just millions of objects—lysosomes, 
endosomes, ribosomes, ligands, peroxisomes, proteins of every size and shape—bumping into 
millions of other objects and performing mundane tasks: extracting energy from nutrients, 
assembling structures, getting rid of waste, warding off intruders, sending and receiving 
messages, making repairs. Typically a cell will contain some 20,000 different types of protein, 
and of these about 2,000 types will each be represented by at least 50,000 molecules. “This 
means,” says Nuland, “that even if we count only those molecules present in amounts of more 
than 50,000 each, the total is still a very minimum of 100 million protein molecules in each 
cell. Such a staggering figure gives some idea of the swarming immensity of biochemical 
activity within us.” 

    It is all an immensely demanding process. Your heart must pump 75 gallons of blood an 
hour, 1,800 gallons every day, 657,000 gallons in a year—that’s enough to fill four Olympic-
sized swimming pools—to keep all those cells freshly oxygenated. (And that’s at rest. During 
exercise the rate can increase as much as sixfold.) The oxygen is taken up by the 
mitochondria. These are the cells’ power stations, and there are about a thousand of them in a 
typical cell, though the number varies considerably depending on what a cell does and how 
much energy it requires. 

    You may recall from an earlier chapter that the mitochondria are thought to have originated 
as captive bacteria and that they now live essentially as lodgers in our cells, preserving their 
own genetic instructions, dividing to their own timetable, speaking their own language. You 
may also recall that we are at the mercy of their goodwill. Here’s why. Virtually all the food 
and oxygen you take into your body are delivered, after processing, to the mitochondria, 
where they are converted into a molecule called adenosine triphosphate, or ATP. 

    You may not have heard of ATP, but it is what keeps you going. ATP molecules are 
essentially little battery packs that move through the cell providing energy for all the cell’s 
processes, and you get through a lot of it. At any given moment, a typical cell in your body 
will have about one billion ATP molecules in it, and in two minutes every one of them will 
have been drained dry and another billion will have taken their place. Every day you produce 
and use up a volume of ATP equivalent to about half your body weight. Feel the warmth of 
your skin. That’s your ATP at work. 

    When cells are no longer needed, they die with what can only be called great dignity. They 
take down all the struts and buttresses that hold them together and quietly devour their 
component parts. The process is known as apoptosis or programmed cell death. Every day 
billions of your cells die for your benefit and billions of others clean up the mess. Cells can 
also die violently—for instance, when infected—but mostly they die because they are told to. 
Indeed, if not told to live—if not given some kind of active instruction from another cell—
cells automatically kill themselves. Cells need a lot of reassurance. 



    When, as occasionally happens, a cell fails to expire in the prescribed manner, but rather 
begins to divide and proliferate wildly, we call the result cancer. Cancer cells are really just 
confused cells. Cells make this mistake fairly regularly, but the body has elaborate 
mechanisms for dealing with it. It is only very rarely that the process spirals out of control. On 
average, humans suffer one fatal malignancy for each 100 million billion cell divisions. 
Cancer is bad luck in every possible sense of the term. 

    The wonder of cells is not that things occasionally go wrong, but that they manage 
everything so smoothly for decades at a stretch. They do so by constantly sending and 
monitoring streams of messages—a cacophony of messages—from all around the body: 
instructions, queries, corrections, requests for assistance, updates, notices to divide or expire. 
Most of these signals arrive by means of couriers called hormones, chemical entities such as 
insulin, adrenaline, estrogen, and testosterone that convey information from remote outposts 
like the thyroid and endocrine glands. Still other messages arrive by telegraph from the brain 
or from regional centers in a process called paracrine signaling. Finally, cells communicate 
directly with their neighbors to make sure their actions are coordinated. 

    What is perhaps most remarkable is that it is all just random frantic action, a sequence of 
endless encounters directed by nothing more than elemental rules of attraction and repulsion. 
There is clearly no thinking presence behind any of the actions of the cells. It all just happens, 
smoothly and repeatedly and so reliably that seldom are we even conscious of it, yet somehow 
all this produces not just order within the cell but a perfect harmony right across the organism. 
In ways that we have barely begun to understand, trillions upon trillions of reflexive chemical 
reactions add up to a mobile, thinking, decision-making you—or, come to that, a rather less 
reflective but still incredibly organized dung beetle. Every living thing, never forget, is a 
wonder of atomic engineering. 

    Indeed, some organisms that we think of as primitive enjoy a level of cellular organization 
that makes our own look carelessly pedestrian. Disassemble the cells of a sponge (by passing 
them through a sieve, for instance), then dump them into a solution, and they will find their 
way back together and build themselves into a sponge again. You can do this to them over 
and over, and they will doggedly reassemble because, like you and me and every other living 
thing, they have one overwhelming impulse: to continue to be. 

    And that’s because of a curious, determined, barely understood molecule that is itself not 
alive and for the most part doesn’t do anything at all. We call it DNA, and to begin to 
understand its supreme importance to science and to us we need to go back 160 years or so to 
Victorian England and to the moment when the naturalist Charles Darwin had what has been 
called “the single best idea that anyone has ever had”—and then, for reasons that take a little 
explaining, locked it away in a drawer for the next fifteen years. 



25    DARWIN’S SINGULAR NOTION 

 

 

 

 

IN THE LATE summer or early autumn of 1859, Whitwell Elwin, editor of the respected 
British journal the Quarterly Review, was sent an advance copy of a new book by the 
naturalist Charles Darwin. Elwin read the book with interest and agreed that it had merit, but 
feared that the subject matter was too narrow to attract a wide audience. He urged Darwin to 
write a book about pigeons instead. “Everyone is interested in pigeons,” he observed 
helpfully. 

    Elwin’s sage advice was ignored, and On the Origin of Species by Means of Natural 
Selection, or the Preservation of Favoured Races in the Struggle for Life was published in late 
November 1859, priced at fifteen shillings. The first edition of 1,250 copies sold out on the 
first day. It has never been out of print, and scarcely out of controversy, in all the time since—
not bad going for a man whose principal other interest was earthworms and who, but for a 
single impetuous decision to sail around the world, would very probably have passed his life 
as an anonymous country parson known for, well, for an interest in earthworms. 

    Charles Robert Darwin was born on February 12, 1809,1 in Shrewsbury, a sedate market 
town in the west Midlands of England. His father was a prosperous and well-regarded 
physician. His mother, who died when Charles was only eight, was the daughter of Josiah 
Wedgwood, of pottery fame. 

    Darwin enjoyed every advantage of upbringing, but continually pained his widowed father 
with his lackluster academic performance. “You care for nothing but shooting, dogs, and rat-
catching, and you will be a disgrace to yourself and all your family,” his father wrote in a line 
that nearly always appears just about here in any review of Darwin’s early life. Although his 
inclination was to natural history, for his father’s sake he tried to study medicine at Edinburgh 
University but couldn’t bear the blood and suffering. The experience of witnessing an 
operation on an understandably distressed child—this was in the days before anesthetics, of 
course—left him permanently traumatized. He tried law instead, but found that insupportably 
dull and finally managed, more or less by default, to acquire a degree in divinity from 
Cambridge. 

    A life in a rural vicarage seemed to await him when from out of the blue there came a more 
tempting offer. Darwin was invited to sail on the naval survey ship HMS Beagle, essentially 
as dinner company for the captain, Robert FitzRoy, whose rank precluded his socializing with 
anyone other than a gentleman. FitzRoy, who was very odd, chose Darwin in part because he 
liked the shape of Darwin’s nose. (It betokened depth of character, he believed.) Darwin was 
not FitzRoy’s first choice, but got the nod when FitzRoy’s preferred companion dropped out. 
From a twenty-first-century perspective the two men’s most striking joint feature was their 

                                                 
1 An auspicious date in history: on the same day in Kentucky, Abraham Lincoln was born. 
 



extreme youthfulness. At the time of sailing, FitzRoy was only twenty-three, Darwin just 
twenty-two. 

    FitzRoy’s formal assignment was to chart coastal waters, but his hobby—passion really—
was to seek out evidence for a literal, biblical interpretation of creation. That Darwin was 
trained for the ministry was central to FitzRoy’s decision to have him aboard. That Darwin 
subsequently proved to be not only liberal of view but less than wholeheartedly devoted to 
Christian fundamentals became a source of lasting friction between them. 

    Darwin’s time aboard HMS Beagle, from 1831 to 1836, was obviously the formative 
experience of his life, but also one of the most trying. He and his captain shared a small cabin, 
which can’t have been easy as FitzRoy was subject to fits of fury followed by spells of 
simmering resentment. He and Darwin constantly engaged in quarrels, some “bordering on 
insanity,” as Darwin later recalled. Ocean voyages tended to become melancholy 
undertakings at the best of times—the previous captain of the Beagle had put a bullet through 
his brain during a moment of lonely gloom—and FitzRoy came from a family well known for 
a depressive instinct. His uncle, Viscount Castlereagh, had slit his throat the previous decade 
while serving as Chancellor of the Exchequer. (FitzRoy would himself commit suicide by the 
same method in 1865.) Even in his calmer moods, FitzRoy proved strangely unknowable. 
Darwin was astounded to learn upon the conclusion of their voyage that almost at once 
FitzRoy married a young woman to whom he had long been betrothed. In five years in 
Darwin’s company, he had not once hinted at an attachment or even mentioned her name. 

    In every other respect, however, the Beagle voyage was a triumph. Darwin experienced 
adventure enough to last a lifetime and accumulated a hoard of specimens sufficient to make 
his reputation and keep him occupied for years. He found a magnificent trove of giant ancient 
fossils, including the finest Megatherium known to date; survived a lethal earthquake in 
Chile; discovered a new species of dolphin (which he dutifully named Delphinus fitzroyi); 
conducted diligent and useful geological investigations throughout the Andes; and developed 
a new and much-admired theory for the formation of coral atolls, which suggested, not 
coincidentally, that atolls could not form in less than a million years—the first hint of his 
long-standing attachment to the extreme antiquity of earthly processes. In 1836, aged twenty-
seven, he returned home after being away for five years and two days. He never left England 
again. 

     One thing Darwin didn’t do on the voyage was propound the theory (or even a theory) of 
evolution. For a start, evolution as a concept was already decades old by the 1830s. Darwin’s 
own grandfather, Erasmus, had paid tribute to evolutionary principles in a poem of inspired 
mediocrity called “The Temple of Nature” years before Charles was even born. It wasn’t until 
the younger Darwin was back in England and read Thomas Malthus’s Essay on the Principle 
of Population (which proposed that increases in food supply could never keep up with 
population growth for mathematical reasons) that the idea began to percolate through his mind 
that life is a perpetual struggle and that natural selection was the means by which some 
species prospered while others failed. Specifically what Darwin saw was that all organisms 
competed for resources, and those that had some innate advantage would prosper and pass on 
that advantage to their offspring. By such means would species continuously improve. 

    It seems an awfully simple idea—it is an awfully simple idea—but it explained a great deal, 
and Darwin was prepared to devote his life to it. “How stupid of me not to have thought of 
it!” T. H. Huxley cried upon reading On the Origin of Species. It is a view that has been 
echoed ever since. 



    Interestingly, Darwin didn’t use the phrase “survival of the fittest” in any of his work 
(though he did express his admiration for it). The expression was coined five years after the 
publication of On the Origin of Species by Herbert Spencer in Principles of Biology in 1864. 
Nor did he employ the word evolution in print until the sixth edition of Origin (by which time 
its use had become too widespread to resist), preferring instead “descent with modification.” 
Nor, above all, were his conclusions in any way inspired by his noticing, during his time in 
the Galápagos Islands, an interesting diversity in the beaks of finches. The story as 
conventionally told (or at least as frequently remembered by many of us) is that Darwin, 
while traveling from island to island, noticed that the finches’ beaks on each island were 
marvelously adapted for exploiting local resources—that on one island beaks were sturdy and 
short and good for cracking nuts, while on the next island beaks were perhaps long and thin 
and well suited for winkling food out of crevices—and it was this that set him to thinking that 
perhaps the birds had not been created this way, but had in a sense created themselves. 

    In fact, the birds had created themselves, but it wasn’t Darwin who noticed it. At the time 
of the Beagle voyage, Darwin was fresh out of college and not yet an accomplished naturalist 
and so failed to see that the Galápagos birds were all of a type. It was his friend the 
ornithologist John Gould who realized that what Darwin had found was lots of finches with 
different talents. Unfortunately, in his inexperience Darwin had not noted which birds came 
from which islands. (He had made a similar error with tortoises.) It took years to sort the 
muddles out. 

    Because of these oversights, and the need to sort through crates and crates of other Beagle 
specimens, it wasn’t until 1842, six years after his return to England, that Darwin finally 
began to sketch out the rudiments of his new theory. These he expanded into a 230-page 
“sketch” two years later. And then he did an extraordinary thing: he put his notes away and 
for the next decade and a half busied himself with other matters. He fathered ten children, 
devoted nearly eight years to writing an exhaustive opus on barnacles (“I hate a barnacle as no 
man ever did before,” he sighed, understandably, upon the work’s conclusion), and fell prey 
to strange disorders that left him chronically listless, faint, and “flurried,” as he put it. The 
symptoms nearly always included a terrible nausea and generally also incorporated 
palpitations, migraines, exhaustion, trembling, spots before the eyes, shortness of breath, 
“swimming of the head,” and, not surprisingly, depression. 

    The cause of the illness has never been established, but the most romantic and perhaps 
likely of the many suggested possibilities is that he suffered from Chagas’s disease, a 
lingering tropical malady that he could have acquired from the bite of a Benchuga bug in 
South America. A more prosaic explanation is that his condition was psychosomatic. In either 
case, the misery was not. Often he could work for no more than twenty minutes at a stretch, 
sometimes not that. 

    Much of the rest of his time was devoted to a series of increasingly desperate treatments—
icy plunge baths, dousings in vinegar, draping himself with “electric chains” that subjected 
him to small jolts of current. He became something of a hermit, seldom leaving his home in 
Kent, Down House. One of his first acts upon moving to the house was to erect a mirror 
outside his study window so that he could identify, and if necessary avoid, callers. 

    Darwin kept his theory to himself because he well knew the storm it would cause. In 1844, 
the year he locked his notes away, a book called Vestiges of the Natural History of Creation 
roused much of the thinking world to fury by suggesting that humans might have evolved 
from lesser primates without the assistance of a divine creator. Anticipating the outcry, the 



author had taken careful steps to conceal his identity, which he kept a secret from even his 
closest friends for the next forty years. Some wondered if Darwin himself might be the author. 
Others suspected Prince Albert. In fact, the author was a successful and generally unassuming 
Scottish publisher named Robert Chambers whose reluctance to reveal himself had a practical 
dimension as well as a personal one: his firm was a leading publisher of Bibles. Vestiges was 
warmly blasted from pulpits throughout Britain and far beyond, but also attracted a good deal 
of more scholarly ire. The Edinburgh Review devoted nearly an entire issue—eighty-five 
pages—to pulling it to pieces. Even T. H. Huxley, a believer in evolution, attacked the book 
with some venom, unaware that the author was a friend.2  

    Darwin’s manuscript might have remained locked away till his death but for an alarming 
blow that arrived from the Far East in the early summer of 1858 in the form of a packet 
containing a friendly letter from a young naturalist named Alfred Russel Wallace and the draft 
of a paper, On the Tendency of Varieties to Depart Indefinitely from the Original Type, 
outlining a theory of natural selection that was uncannily similar to Darwin’s secret jottings. 
Even some of the phrasing echoed Darwin’s own. “I never saw a more striking coincidence,” 
Darwin reflected in dismay. “If Wallace had my manuscript sketch written out in 1842, he 
could not have made a better short abstract.” 

    Wallace didn’t drop into Darwin’s life quite as unexpectedly as is sometimes suggested. 
The two were already corresponding, and Wallace had more than once generously sent 
Darwin specimens that he thought might be of interest. In the process of these exchanges 
Darwin had discreetly warned Wallace that he regarded the subject of species creation as his 
own territory. “This summer will make the 20th year (!) since I opened my first note-book, on 
the question of how & in what way do species & varieties differ from each other,” he had 
written to Wallace some time earlier. “I am now preparing my work for publication,” he 
added, even though he wasn’t really. 

In any case, Wallace failed to grasp what Darwin was trying to tell him, and of course he 
could have no idea that his own theory was so nearly identical to one that Darwin had been 
evolving, as it were, for two decades. 

Darwin was placed in an agonizing quandary. If he rushed into print to preserve his priority, 
he would be taking advantage of an innocent tip-off from a distant admirer. But if he stepped 
aside, as gentlemanly conduct arguably required, he would lose credit for a theory that he had 
independently propounded. Wallace’s theory was, by Wallace’s own admission, the result of a 
flash of insight; Darwin’s was the product of years of careful, plodding, methodical thought. It 
was all crushingly unfair. 

To compound his misery, Darwin’s youngest son, also named Charles, had contracted scarlet 
fever and was critically ill. At the height of the crisis, on June 28, the child died. Despite the 
distraction of his son’s illness, Darwin found time to dash off letters to his friends Charles 
Lyell and Joseph Hooker, offering to step aside but noting that to do so would mean that all 
his work, “whatever it may amount to, will be smashed.” Lyell and Hooker came up with the 
compromise solution of presenting a summary of Darwin’s and Wallace’s ideas together. The 
venue they settled on was a meeting of the Linnaean Society, which at the time was struggling 
to find its way back into fashion as a seat of scientific eminence. On July 1, 1858, Darwin’s 

                                                 
2 Darwin was one of the few to guess correctly. He happened to be visiting Chambers one day when an advance 
copy of the sixth edition of Vestiges was delivered. The keenness with which Chambers checked the revisions 
was something of a giveaway, though it appears the two men did not discuss it. 



and Wallace’s theory was unveiled to the world. Darwin himself was not present. On the day 
of the meeting, he and his wife were burying their son. 

    The Darwin–Wallace presentation was one of seven that evening—one of the others was on 
the flora of Angola—and if the thirty or so people in the audience had any idea that they were 
witnessing the scientific highlight of the century, they showed no sign of it. No discussion 
followed. Nor did the event attract much notice elsewhere. Darwin cheerfully later noted that 
only one person, a Professor Haughton of Dublin, mentioned the two papers in print and his 
conclusion was “that all that was new in them was false, and what was true was old.” 

    Wallace, still in the distant East, learned of these maneuverings long after the event, but 
was remarkably equable and seemed pleased to have been included at all. He even referred to 
the theory forever after as “Darwinism.” Much less amenable to Darwin’s claim of priority 
was a Scottish gardener named Patrick Matthew who had, rather remarkably, also come up 
with the principles of natural selection—in fact, in the very year that Darwin had set sail in 
theBeagle. Unfortunately, Matthew had published these views in a book called Naval Timber 
and Arboriculture, which had been missed not just by Darwin, but by the entire world. 
Matthew kicked up in a lively manner, with a letter to Gardener’s Chronicle, when he saw 
Darwin gaining credit everywhere for an idea that really was his. Darwin apologized without 
hesitation, though he did note for the record: “I think that no one will feel surprised that 
neither I, nor apparently any other naturalist, has heard of Mr. Matthew’s views, considering 
how briefly they are given, and they appeared in the Appendix to a work on Naval Timber 
and Arboriculture.” 

    Wallace continued for another fifty years as a naturalist and thinker, occasionally a very 
good one, but increasingly fell from scientific favor by taking up dubious interests such as 
spiritualism and the possibility of life existing elsewhere in the universe. So the theory 
became, essentially by default, Darwin’s alone. 

    Darwin never ceased being tormented by his ideas. He referred to himself as “the Devil’s 
Chaplain” and said that revealing the theory felt “like confessing a murder.” Apart from all 
else, he knew it deeply pained his beloved and pious wife. Even so, he set to work at once 
expanding his manuscript into a book-length work. Provisionally he called it An Abstract of 
an Essay on the Origin of Species and Varieties through Natural Selection —a title so tepid 
and tentative that his publisher, John Murray, decided to issue just five hundred copies. But 
once presented with the manuscript, and a slightly more arresting title, Murray reconsidered 
and increased the initial print run to 1,250. 

    On the Origin of Species was an immediate commercial success, but rather less of a critical 
one. Darwin’s theory presented two intractable difficulties. It needed far more time than Lord 
Kelvin was willing to concede, and it was scarcely supported by fossil evidence. Where, 
asked Darwin’s more thoughtful critics, were the transitional forms that his theory so clearly 
called for? If new species were continuously evolving, then there ought to be lots of 
intermediate forms scattered across the fossil record, but there were not.3 In fact, the record as 
it existed then (and for a long time afterward) showed no life at all right up to the moment of 
the famous Cambrian explosion. 

                                                 
3 By coincidence, in 1861, at the height of the controversy, just such evidence turned up when workers in 
Bavaria found the bones of an ancient archaeopteryx, a creature halfway between a bird and a dinosaur. (It had 
feathers, but it also had teeth.) It was an impressive and helpful find, and its significance much debated, but a 
single discovery could hardly be considered conclusive. 



    But now here was Darwin, without any evidence, insisting that the earlier seas must have 
had abundant life and that we just hadn’t found it yet because, for whatever reason, it hadn’t 
been preserved. It simply could not be otherwise, Darwin maintained. “The case at present 
must remain inexplicable; and may be truly urged as a valid argument against the views here 
entertained,” he allowed most candidly, but he refused to entertain an alternative possibility. 
By way of explanation he speculated—inventively but incorrectly—that perhaps the 
Precambrian seas had been too clear to lay down sediments and thus had preserved no fossils. 

    Even Darwin’s closest friends were troubled by the blitheness of some of his assertions. 
Adam Sedgwick, who had taught Darwin at Cambridge and taken him on a geological tour of 
Wales in 1831, said the book gave him “more pain than pleasure.” Louis Agassiz dismissed it  
as poor conjecture. Even Lyell concluded gloomily: “Darwin goes too far.” 

    T. H. Huxley disliked Darwin’s insistence on huge amounts of geological time because he 
was a saltationist, which is to say a believer in the idea that evolutionary changes happen not 
gradually but suddenly. Saltationists (the word comes from the Latin for “leap”) couldn’t 
accept that complicated organs could ever emerge in slow stages. What good, after all, is one-
tenth of a wing or half an eye? Such organs, they thought, only made sense if they appeared in 
a finished state. 

    The belief was surprising in as radical a spirit as Huxley because it closely recalled a very 
conservative religious notion first put forward by the English theologian William Paley in 
1802 and known as argument from design. Paley contended that if you found a pocket watch 
on the ground, even if you had never seen such a thing before, you would instantly perceive 
that it had been made by an intelligent entity. So it was, he believed, with nature: its 
complexity was proof of its design. The notion was a powerful one in the nineteenth century, 
and it gave Darwin trouble too. “The eye to this day gives me a cold shudder,” he 
acknowledged in a letter to a friend. In the Origin he conceded that it “seems, I freely confess, 
absurd in the highest possible degree” that natural selection could produce such an instrument 
in gradual steps. 

    Even so, and to the unending exasperation of his supporters, Darwin not only insisted that 
all change was gradual, but in nearly every edition of Origin he stepped up the amount of time 
he supposed necessary to allow evolution to progress, which pushed his ideas increasingly out 
of favor. “Eventually,” according to the scientist and historian Jeffrey Schwartz, “Darwin lost 
virtually all the support that still remained among the ranks of fellow natural historians and 
geologists.” 

    Ironically, considering that Darwin called his book On the Origin of Species, the one thing 
he couldn’t explain was how species originated. Darwin’s theory suggested a mechanism for 
how a species might become stronger or better or faster—in a word, fitter—but gave no 
indication of how it might throw up a new species. A Scottish engineer, Fleeming Jenkin, 
considered the problem and noted an important flaw in Darwin’s argument. Darwin believed 
that any beneficial trait that arose in one generation would be passed on to subsequent 
generations, thus strengthening the species. 

    Jenkin pointed out that a favorable trait in one parent wouldn’t become dominant in 
succeeding generations, but in fact would be diluted through blending. If you pour whiskey 
into a tumbler of water, you don’t make the whiskey stronger, you make it weaker. And if you 
pour that dilute solution into another glass of water, it becomes weaker still. In the same way, 
any favorable trait introduced by one parent would be successively watered down by 



subsequent matings until it ceased to be apparent at all. Thus Darwin’s theory was not a recipe 
for change, but for constancy. Lucky flukes might arise from time to time, but they would 
soon vanish under the general impulse to bring everything back to a stable mediocrity. If 
natural selection were to work, some alternative, unconsidered mechanism was required. 

    Unknown to Darwin and everyone else, eight hundred miles away in a tranquil corner of 
Middle Europe a retiring monk named Gregor Mendel was coming up with the solution. 

    Mendel was born in 1822 to a humble farming family in a backwater of the Austrian 
empire in what is now the Czech Republic. Schoolbooks once portrayed him as a simple but 
observant provincial monk whose discoveries were largely serendipitous—the result of 
noticing some interesting traits of inheritance while pottering about with pea plants in the 
monastery’s kitchen garden. In fact, Mendel was a trained scientist—he had studied physics 
and mathematics at the Olmütz Philosophical Institute and the University of Vienna—and he 
brought scientific discipline to all he did. Moreover, the monastery at Brno where he lived 
from 1843 was known as a learned institution. It had a library of twenty thousand books and a 
tradition of careful scientific investigation. 

    Before embarking on his experiments, Mendel spent two years preparing his control 
specimens, seven varieties of pea, to make sure they bred true. Then, helped by two full-time 
assistants, he repeatedly bred and crossbred hybrids from thirty thousand pea plants. It was 
delicate work, requiring them to take the most exacting pains to avoid accidental cross-
fertilization and to note every slight variation in the growth and appearance of seeds, pods, 
leaves, stems, and flowers. Mendel knew what he was doing. 

    He never used the word gene —it wasn’t coined until 1913, in an English medical 
dictionary—though he did invent the terms dominant and recessive. What he established was 
that every seed contained two “factors” or “elemente,” as he called them—a dominant one 
and a recessive one—and these factors, when combined, produced predictable patterns of 
inheritance. 

    The results he converted into precise mathematical formulae. Altogether Mendel spent 
eight years on the experiments, then confirmed his results with similar experiments on 
flowers, corn, and other plants. If anything, Mendel was too scientific in his approach, for 
when he presented his findings at the February and March meetings of the Natural History 
Society of Brno in 1865, the audience of about forty listened politely but was conspicuously 
unmoved, even though the breeding of plants was a matter of great practical interest to many 
of the members. 

    When Mendel’s report was published, he eagerly sent a copy to the great Swiss botanist 
Karl-Wilhelm von Nägeli, whose support was more or less vital for the theory’s prospects. 
Unfortunately, Nägeli failed to perceive the importance of what Mendel had found. He 
suggested that Mendel try breeding hawkweed. Mendel obediently did as Nägeli suggested, 
but quickly realized that hawkweed had none of the requisite features for studying heritability. 
It was evident to him that Nägeli had not read the paper closely, or possibly at all. Frustrated, 
Mendel retired from investigating heritability and spent the rest of his life growing 
outstanding vegetables and studying bees, mice, and sunspots, among much else. Eventually 
he was made abbot. 

    Mendel’s findings weren’t quite as widely ignored as is sometimes suggested. His study 
received a glowing entry in the Encyclopaedia Britannica —then a more leading record of 



scientific thought than now—and was cited repeatedly in an important paper by the German 
Wilhelm Olbers Focke. Indeed, it was because Mendel’s ideas never entirely sank below the 
waterline of scientific thought that they were so easily recovered when the world was ready 
for them. 

    Together, without realizing it, Darwin and Mendel laid the groundwork for all of life 
sciences in the twentieth century. Darwin saw that all living things are connected, that 
ultimately they “trace their ancestry to a single, common source,” while Mendel’s work 
provided the mechanism to explain how that could happen. The two men could easily have 
helped each other. Mendel owned a German edition of the Origin of Species, which he is 
known to have read, so he must have realized the applicability of his work to Darwin’s, yet he 
appears to have made no effort to get in touch. And Darwin for his part is known to have 
studied Focke’s influential paper with its repeated references to Mendel’s work, but didn’t 
connect them to his own studies. 

    The one thing everyone thinks featured in Darwin’s argument, that humans are descended 
from apes, didn’t feature at all except as one passing allusion. Even so, it took no great leap of 
imagination to see the implications for human development in Darwin’s theories, and it 
became an immediate talking point. 

    The showdown came on Saturday, June 30, 1860, at a meeting of the British Association 
for the Advancement of Science in Oxford. Huxley had been urged to attend by Robert 
Chambers, author of Vestiges of the Natural History of Creation, though he was still unaware 
of Chambers’s connection to that contentious tome. Darwin, as ever, was absent. The meeting 
was held at the Oxford Zoological Museum. More than a thousand people crowded into the 
chamber; hundreds more were turned away. People knew that something big was going to 
happen, though they had first to wait while a slumber-inducing speaker named John William 
Draper of New York University bravely slogged his way through two hours of introductory 
remarks on “The Intellectual Development of Europe Considered with Reference to the Views 
of Mr. Darwin.” 

    Finally, the Bishop of Oxford, Samuel Wilberforce, rose to speak. Wilberforce had been 
briefed (or so it is generally assumed) by the ardent anti-Darwinian Richard Owen, who had 
been a guest in his home the night before. As nearly always with events that end in uproar, 
accounts vary widely on what exactly transpired. In the most popular version, Wilberforce, 
when properly in flow, turned to Huxley with a dry smile and demanded of him whether he 
claimed attachment to the apes by way of his grandmother or grandfather. The remark was 
doubtless intended as a quip, but it came across as an icy challenge. According to his own 
account, Huxley turned to his neighbor and whispered, “The Lord hath delivered him into my 
hands,” then rose with a certain relish. 

    Others, however, recalled a Huxley trembling with fury and indignation. At all events, 
Huxley declared that he would rather claim kinship to an ape than to someone who used his 
eminence to propound uninformed twaddle in what was supposed to be a serious scientific 
forum. Such a riposte was a scandalous impertinence, as well as an insult to Wilberforce’s 
office, and the proceedings instantly collapsed in tumult. A Lady Brewster fainted. Robert 
FitzRoy, Darwin’s companion on the Beagle twenty-five years before, wandered through the 
hall with a Bible held aloft, shouting, “The Book, the Book.” (He was at the conference to 
present a paper on storms in his capacity as head of the newly created Meteorological 
Department.) Interestingly, each side afterward claimed to have routed the other. 



    Darwin did eventually make his belief in our kinship with the apes explicit in The Descent 
of Man in 1871. The conclusion was a bold one since nothing in the fossil record supported 
such a notion. The only known early human remains of that time were the famous Neandertal 
bones from Germany and a few uncertain fragments of jawbones, and many respected 
authorities refused to believe even in their antiquity. The Descent of Man was altogether a 
more controversial book, but by the time of its appearance the world had grown less excitable 
and its arguments caused much less of a stir. 

    For the most part, however, Darwin passed his twilight years with other projects, most of 
which touched only tangentially on questions of natural selection. He spent amazingly long 
periods picking through bird droppings, scrutinizing the contents in an attempt to understand 
how seeds spread between continents, and spent years more studying the behavior of worms. 
One of his experiments was to play the piano to them, not to amuse them but to study the 
effects on them of sound and vibration. He was the first to realize how vitally important 
worms are to soil fertility. “It may be doubted whether there are many other animals which 
have played so important a part in the history of the world,” he wrote in his masterwork on the 
subject, The Formation of Vegetable Mould Through the Action of Worms (1881), which was 
actually more popular thanOn the Origin of Species had ever been. Among his other books 
were On the Various Contrivances by Which British and Foreign Orchids Are Fertilised by 
Insects (1862), Expressions of the Emotions in Man and Animals (1872), which sold almost 
5,300 copies on its first day, The Effects of Cross and Self Fertilization in the Vegetable 
Kingdom (1876)—a subject that came improbably close to Mendel’s own work, without 
attaining anything like the same insights—and his last book, The Power of Movement in 
Plants. Finally, but not least, he devoted much effort to studying the consequences of 
inbreeding—a matter of private interest to him. Having married his own cousin, Darwin 
glumly suspected that certain physical and mental frailties among his children arose from a 
lack of diversity in his family tree. 

    Darwin was often honored in his lifetime, but never for On the Origin of Species orDescent 
of Man. When the Royal Society bestowed on him the prestigious Copley Medal it was for his 
geology, zoology, and botany, not evolutionary theories, and the Linnaean Society was 
similarly pleased to honor Darwin without embracing his radical notions. He was never 
knighted, though he was buried in Westminster Abbey—next to Newton. He died at Down in 
April 1882. Mendel died two years later. 

    Darwin’s theory didn’t really gain widespread acceptance until the 1930s and 1940s, with 
the advance of a refined theory called, with a certain hauteur, the Modern Synthesis, 
combining Darwin’s ideas with those of Mendel and others. For Mendel, appreciation was 
also posthumous, though it came somewhat sooner. In 1900, three scientists working 
separately in Europe rediscovered Mendel’s work more or less simultaneously. It was only 
because one of them, a Dutchman named Hugo de Vries, seemed set to claim Mendel’s 
insights as his own that a rival made it noisily clear that the credit really lay with the forgotten 
monk. 

    The world was almost ready, but not quite, to begin to understand how we got here—how 
we made each other. It is fairly amazing to reflect that at the beginning of the twentieth 
century, and for some years beyond, the best scientific minds in the world couldn’t actually 
tell you where babies came from. 

    And these, you may recall, were men who thought science was nearly at an end. 



 

26    THE STUFF OF LIFE 

 

 

 

 

IF YOUR TWO parents hadn’t bonded just when they did—possibly to the second, possibly 
to the nanosecond—you wouldn’t be here. And if their parents hadn’t bonded in a precisely 
timely manner, you wouldn’t be here either. And if their parents hadn’t done likewise, and 
their parents before them, and so on, obviously and indefinitely, you wouldn’t be here. 

    Push backwards through time and these ancestral debts begin to add up. Go back just eight 
generations to about the time that Charles Darwin and Abraham Lincoln were born, and 
already there are over 250 people on whose timely couplings your existence depends. 
Continue further, to the time of Shakespeare and the Mayflower Pilgrims, and you have no 
fewer than 16,384 ancestors earnestly exchanging genetic material in a way that would, 
eventually and miraculously, result in you. 

    At twenty generations ago, the number of people procreating on your behalf has risen to 
1,048,576. Five generations before that, and there are no fewer than 33,554,432 men and 
women on whose devoted couplings your existence depends. By thirty generations ago, your 
total number of forebears—remember, these aren’t cousins and aunts and other incidental 
relatives, but only parents and parents of parents in a line leading ineluctably to you—is over 
one billion (1,073,741,824, to be precise). If you go back sixty-four generations, to the time of 
the Romans, the number of people on whose cooperative efforts your eventual existence 
depends has risen to approximately 1,000,000,000,000,000,000, which is several thousand 
times the total number of people who have ever lived. 

    Clearly something has gone wrong with our math here. The answer, it may interest you to 
learn, is that your line is not pure. You couldn’t be here without a little incest—actually quite 
a lot of incest—albeit at a genetically discreet remove. With so many millions of ancestors in 
your background, there will have been many occasions when a relative from your mother’s 
side of the family procreated with some distant cousin from your father’s side of the ledger. In 
fact, if you are in a partnership now with someone from your own race and country, the 
chances are excellent that you are at some level related. Indeed, if you look around you on a 
bus or in a park or café or any crowded place, most of the people you see are very probably 
relatives. When someone boasts to you that he is descended from William the Conqueror or 
the Mayflower Pilgrims, you should answer at once: “Me, too!” In the most literal and 
fundamental sense we are all family. 

    We are also uncannily alike. Compare your genes with any other human being’s and on 
average they will be about 99.9 percent the same. That is what makes us a species. The tiny 
differences in that remaining 0.1 percent—“roughly one nucleotide base in every thousand,” 
to quote the British geneticist and recent Nobel laureate John Sulston—are what endow us 
with our individuality. Much has been made in recent years of the unraveling of the human 



genome. In fact, there is no such thing as “the” human genome. Every human genome is 
different. Otherwise we would all be identical. It is the endless recombinations of our 
genomes—each nearly identical, but not quite—that make us what we are, both as individuals 
and as a species. 

    But what exactly is this thing we call the genome? And what, come to that, are genes? 
Well, start with a cell again. Inside the cell is a nucleus, and inside each nucleus are the 
chromosomes—forty-six little bundles of complexity, of which twenty-three come from your 
mother and twenty-three from your father. With a very few exceptions, every cell in your 
body—99.999 percent of them, say—carries the same complement of chromosomes. (The 
exceptions are red blood cells, some immune system cells, and egg and sperm cells, which for 
various organizational reasons don’t carry the full genetic package.) Chromosomes constitute 
the complete set of instructions necessary to make and maintain you and are made of long 
strands of the little wonder chemical called deoxyribonucleic acid or DNA—“the most 
extraordinary molecule on Earth,” as it has been called. 

    DNA exists for just one reason—to create more DNA—and you have a lot of it inside you: 
about six feet of it squeezed into almost every cell. Each length of DNA comprises some 3.2 
billion letters of coding, enough to provide 103,480,000,000possible combinations, “guaranteed to 
be unique against all conceivable odds,” in the words of Christian de Duve. That’s a lot of 
possibility—a one followed by more than three billion zeroes. “It would take more than five 
thousand average-size books just to print that figure,” notes de Duve. Look at yourself in the 
mirror and reflect upon the fact that you are beholding ten thousand trillion cells, and that 
almost every one of them holds two yards of densely compacted DNA, and you begin to 
appreciate just how much of this stuff you carry around with you. If all your DNA were 
woven into a single fine strand, there would be enough of it to stretch from the Earth to the 
Moon and back not once or twice but again and again. Altogether, according to one 
calculation, you may have as much as twenty million kilometers of DNA bundled up inside 
you. 

    Your body, in short, loves to make DNA and without it you couldn’t live. Yet DNA is not 
itself alive. No molecule is, but DNA is, as it were, especially unalive. It is “among the most 
nonreactive, chemically inert molecules in the living world,” in the words of the geneticist 
Richard Lewontin. That is why it can be recovered from patches of long-dried blood or semen 
in murder investigations and coaxed from the bones of ancient Neandertals. It also explains 
why it took scientists so long to work out how a substance so mystifyingly low key—so, in a 
word, lifeless—could be at the very heart of life itself. 

     As a known entity, DNA has been around longer than you might think. It was discovered 
as far back as 1869 by Johann Friedrich Miescher, a Swiss scientist working at the University 
of Tübingen in Germany. While delving microscopically through the pus in surgical 
bandages, Miescher found a substance he didn’t recognize and called it nuclein (because it 
resided in the nuclei of cells). At the time, Miescher did little more than note its existence, but 
nuclein clearly remained on his mind, for twenty-three years later in a letter to his uncle he 
raised the possibility that such molecules could be the agents behind heredity. This was an 
extraordinary insight, but one so far in advance of the day’s scientific requirements that it 
attracted no attention at all. 

    For most of the next half century the common assumption was that the material—now 
called deoxyribonucleic acid, or DNA—had at most a subsidiary role in matters of heredity. It 
was too simple. It had just four basic components, called nucleotides, which was like having 



an alphabet of just four letters. How could you possibly write the story of life with such a 
rudimentary alphabet? (The answer is that you do it in much the way that you create complex 
messages with the simple dots and dashes of Morse code—by combining them.) DNA didn’t 
do anything at all, as far as anyone could tell. It just sat there in the nucleus, possibly binding 
the chromosome in some way or adding a splash of acidity on command or fulfilling some 
other trivial task that no one had yet thought of. The necessary complexity, it was thought, 
had to exist in proteins in the nucleus. 

    There were, however, two problems with dismissing DNA. First, there was so much of it: 
two yards in nearly every nucleus, so clearly the cells esteemed it in some important way. On 
top of this, it kept turning up, like the suspect in a murder mystery, in experiments. In two 
studies in particular, one involving the Pneumonococcus bacterium and another involving 
bacteriophages (viruses that infect bacteria), DNA betrayed an importance that could only be 
explained if its role were more central than prevailing thought allowed. The evidence 
suggested that DNA was somehow involved in the making of proteins, a process vital to life, 
yet it was also clear that proteins were being made outside the nucleus, well away from the 
DNA that was supposedly directing their assembly. 

    No one could understand how DNA could possibly be getting messages to the proteins. The 
answer, we now know, was RNA, or ribonucleic acid, which acts as an interpreter between 
the two. It is a notable oddity of biology that DNA and proteins don’t speak the same 
language. For almost four billion years they have been the living world’s great double act, and 
yet they answer to mutually incompatible codes, as if one spoke Spanish and the other Hindi. 
To communicate they need a mediator in the form of RNA. Working with a kind of chemical 
clerk called a ribosome, RNA translates information from a cell’s DNA into terms proteins 
can understand and act upon. 

    However, by the early 1900s, where we resume our story, we were still a very long way 
from understanding that, or indeed almost anything else to do with the confused business of 
heredity. 

    Clearly there was a need for some inspired and clever experimentation, and happily the age 
produced a young person with the diligence and aptitude to undertake it. His name was 
Thomas Hunt Morgan, and in 1904, just four years after the timely rediscovery of Mendel’s 
experiments with pea plants and still almost a decade before gene would even become a word, 
he began to do remarkably dedicated things with chromosomes. 

    Chromosomes had been discovered by chance in 1888 and were so called because they 
readily absorbed dye and thus were easy to see under the microscope. By the turn of the 
twentieth century it was strongly suspected that they were involved in the passing on of traits, 
but no one knew how, or even really whether, they did this. 

    Morgan chose as his subject of study a tiny, delicate fly formally called Drosophila 
melanogaster, but more commonly known as the fruit fly (or vinegar fly, banana fly, or 
garbage fly). Drosophila is familiar to most of us as that frail, colorless insect that seems to 
have a compulsive urge to drown in our drinks. As laboratory specimens fruit flies had certain 
very attractive advantages: they cost almost nothing to house and feed, could be bred by the 
millions in milk bottles, went from egg to productive parenthood in ten days or less, and had 
just four chromosomes, which kept things conveniently simple. 



    Working out of a small lab (which became known inevitably as the Fly Room) in 
Schermerhorn Hall at Columbia University in New York, Morgan and his team embarked on 
a program of meticulous breeding and crossbreeding involving millions of flies (one 
biographer says billions, though that is probably an exaggeration), each of which had to be 
captured with tweezers and examined under a jeweler’s glass for any tiny variations in 
inheritance. For six years they tried to produce mutations by any means they could think of—
zapping the flies with radiation and X-rays, rearing them in bright light and darkness, baking 
them gently in ovens, spinning them crazily in centrifuges—but nothing worked. Morgan was 
on the brink of giving up when there occurred a sudden and repeatable mutation—a fly that 
had white eyes rather than the usual red ones. With this breakthrough, Morgan and his 
assistants were able to generate useful deformities, allowing them to track a trait through 
successive generations. By such means they could work out the correlations between 
particular characteristics and individual chromosomes, eventually proving to more or less 
everyone’s satisfaction that chromosomes were at the heart of inheritance. 

    The problem, however, remained the next level of biological intricacy: the enigmatic genes 
and the DNA that composed them. These were much trickier to isolate and understand. As 
late as 1933, when Morgan was awarded a Nobel Prize for his work, many researchers still 
weren’t convinced that genes even existed. As Morgan noted at the time, there was no 
consensus “as to what the genes are—whether they are real or purely fictitious.” It may seem 
surprising that scientists could struggle to accept the physical reality of something so 
fundamental to cellular activity, but as Wallace, King, and Sanders point out in Biology: The 
Science of Life (that rarest thing: a readable college text), we are in much the same position 
today with mental processes such as thought and memory. We know that we have them, of 
course, but we don’t know what, if any, physical form they take. So it was for the longest time 
with genes. The idea that you could pluck one from your body and take it away for study was 
as absurd to many of Morgan’s peers as the idea that scientists today might capture a stray 
thought and examine it under a microscope. 

    What was certainly true was that something associated with chromosomes was directing 
cell replication. Finally, in 1944, after fifteen years of effort, a team at the Rockefeller 
Institute in Manhattan, led by a brilliant but diffident Canadian named Oswald Avery, 
succeeded with an exceedingly tricky experiment in which an innocuous strain of bacteria was 
made permanently infectious by crossing it with alien DNA, proving that DNA was far more 
than a passive molecule and almost certainly was the active agent in heredity. The Austrian-
born biochemist Erwin Chargaff later suggested quite seriously that Avery’s discovery was 
worth two Nobel Prizes. 

    Unfortunately, Avery was opposed by one of his own colleagues at the institute, a strong-
willed and disagreeable protein enthusiast named Alfred Mirsky, who did everything in his 
power to discredit Avery’s work—including, it has been said, lobbying the authorities at the 
Karolinska Institute in Stockholm not to give Avery a Nobel Prize. Avery by this time was 
sixty-six years old and tired. Unable to deal with the stress and controversy, he resigned his 
position and never went near a lab again. But other experiments elsewhere overwhelmingly 
supported his conclusions, and soon the race was on to find the structure of DNA. 

   Had you been a betting person in the early 1950s, your money would almost certainly have 
been on Linus Pauling of Caltech, America’s leading chemist, to crack the structure of DNA. 
Pauling was unrivaled in determining the architecture of molecules and had been a pioneer in 
the field of X-ray crystallography, a technique that would prove crucial to peering into the 
heart of DNA. In an exceedingly distinguished career, he would win two Nobel Prizes (for 



chemistry in 1954 and peace in 1962), but with DNA he became convinced that the structure 
was a triple helix, not a double one, and never quite got on the right track. Instead, victory fell 
to an unlikely quartet of scientists in England who didn’t work as a team, often weren’t on 
speaking terms, and were for the most part novices in the field. 

    Of the four, the nearest to a conventional boffin was Maurice Wilkins, who had spent much 
of the Second World War helping to design the atomic bomb. Two of the others, Rosalind 
Franklin and Francis Crick, had passed their war years working on mines for the British 
government—Crick of the type that blow up, Franklin of the type that produce coal. 

    The most unconventional of the foursome was James Watson, an American prodigy who 
had distinguished himself as a boy as a member of a highly popular radio program called The 
Quiz Kids (and thus could claim to be at least part of the inspiration for some of the members 
of the Glass family in Franny and Zooey and other works by J. D. Salinger) and who had 
entered the University of Chicago aged just fifteen. He had earned his Ph.D. by the age of 
twenty-two and was now attached to the famous Cavendish Laboratory in Cambridge. In 
1951, he was a gawky twenty-three-year-old with a strikingly lively head of hair that appears 
in photographs to be straining to attach itself to some powerful magnet just out of frame. 

    Crick, twelve years older and still without a doctorate, was less memorably hirsute and 
slightly more tweedy. In Watson’s account he is presented as blustery, nosy, cheerfully 
argumentative, impatient with anyone slow to share a notion, and constantly in danger of 
being asked to go elsewhere. Neither was formally trained in biochemistry. 

    Their assumption was that if you could determine the shape of a DNA molecule you would 
be able to see—correctly, as it turned out—how it did what it did. They hoped to achieve this, 
it would appear, by doing as little work as possible beyond thinking, and no more of that than 
was absolutely necessary. As Watson cheerfully (if a touch disingenuously) remarked in his 
autobiographical book The Double Helix, “It was my hope that the gene might be solved 
without my learning any chemistry.” They weren’t actually assigned to work on DNA, and at 
one point were ordered to stop it. Watson was ostensibly mastering the art of crystallography; 
Crick was supposed to be completing a thesis on the X-ray diffraction of large molecules. 

    Although Crick and Watson enjoy nearly all the credit in popular accounts for solving the 
mystery of DNA, their breakthrough was crucially dependent on experimental work done by 
their competitors, the results of which were obtained “fortuitously,” in the tactful words of the 
historian Lisa Jardine. Far ahead of them, at least at the beginning, were two academics at 
King’s College in London, Wilkins and Franklin. 

    The New Zealand–born Wilkins was a retiring figure, almost to the point of invisibility. A 
1998 PBS documentary on the discovery of the structure of DNA—a feat for which he shared 
the 1962 Nobel Prize with Crick and Watson—managed to overlook him entirely. 

    The most enigmatic character of all was Franklin. In a severely unflattering portrait, 
Watson in The Double Helix depicted Franklin as a woman who was unreasonable, secretive, 
chronically uncooperative, and—this seemed especially to irritate him—almost willfully 
unsexy. He allowed that she “was not unattractive and might have been quite stunning had she 
taken even a mild interest in clothes,” but in this she disappointed all expectations. She didn’t 



even use lipstick, he noted in wonder, while her dress sense “showed all the imagination of 
English blue-stocking adolescents.”1  

    However, she did have the best images in existence of the possible structure of DNA, 
achieved by means of X-ray crystallography, the technique perfected by Linus Pauling. 
Crystallography had been used successfully to map atoms in crystals (hence 
“crystallography”), but DNA molecules were a much more finicky proposition. Only Franklin 
was managing to get good results from the process, but to Wilkins’s perennial exasperation 
she refused to share her findings. 

    If Franklin was not warmly forthcoming with her findings, she cannot be altogether 
blamed. Female academics at King’s in the 1950s were treated with a formalized disdain that 
dazzles modern sensibilities (actually any sensibilities). However senior or accomplished, 
they were not allowed into the college’s senior common room but instead had to take their 
meals in a more utilitarian chamber that even Watson conceded was “dingily pokey.” On top 
of this she was being constantly pressed—at times actively harassed—to share her results with 
a trio of men whose desperation to get a peek at them was seldom matched by more engaging 
qualities, like respect. “I’m afraid we always used to adopt—let’s say a patronizing attitude 
toward her,” Crick later recalled. Two of these men were from a competing institution and the 
third was more or less openly siding with them. It should hardly come as a surprise that she 
kept her results locked away. 

    That Wilkins and Franklin did not get along was a fact that Watson and Crick seem to have 
exploited to their benefit. Although Crick and Watson were trespassing rather unashamedly 
on Wilkins’s territory, it was with them that he increasingly sided—not altogether surprisingly 
since Franklin herself was beginning to act in a decidedly queer way. Although her results 
showed that DNA definitely was helical in shape, she insisted to all that it was not. To 
Wilkins’s presumed dismay and embarrassment, in the summer of 1952 she posted a mock 
notice around the King’s physics department that said: “It is with great regret that we have to 
announce the death, on Friday 18th July 1952 of D.N.A. helix. . . . It is hoped that Dr. M.H.F. 
Wilkins will speak in memory of the late helix.” 

    The outcome of all this was that in January 1953, Wilkins showed Watson Franklin’s 
images, “apparently without her knowledge or consent.” It would be an understatement to call 
it a significant help. Years later Watson conceded that it “was the key event . . . it mobilized 
us.” Armed with the knowledge of the DNA molecule’s basic shape and some important 
elements of its dimensions, Watson and Crick redoubled their efforts. Everything now seemed 
to go their way. At one point Pauling was en route to a conference in England at which he 
would in all likelihood have met with Wilkins and learned enough to correct the 
misconceptions that had put him on the wrong line of inquiry, but this was the McCarthy era 
and Pauling found himself detained at Idlewild Airport in New York, his passport confiscated, 
on the grounds that he was too liberal of temperament to be allowed to travel abroad. Crick 
and Watson also had the no less convenient good fortune that Pauling’s son was working at 
the Cavendish and innocently kept them abreast of any news of developments and setbacks at 
home. 

    Still facing the possibility of being trumped at any moment, Watson and Crick applied 
themselves feverishly to the problem. It was known that DNA had four chemical 
                                                 
1 In 1968, Harvard University Press canceled publication of The Double Helix after Crick and Wilkins 
complained about its characterizations, which the science historian Lisa Jardine has described as "gratuitously 
hurtful." The descriptions quoted above are after Watson softened his comments. 



components—called adenine, guanine, cytosine, and thiamine—and that these paired up in 
particular ways. By playing with pieces of cardboard cut into the shapes of molecules, Watson 
and Crick were able to work out how the pieces fit together. From this they made a Meccano-
like model—perhaps the most famous in modern science—consisting of metal plates bolted 
together in a spiral, and invited Wilkins, Franklin, and the rest of the world to have a look. 
Any informed person could see at once that they had solved the problem. It was without 
question a brilliant piece of detective work, with or without the boost of Franklin’s picture. 

    The April 25, 1953, edition of Nature carried a 900-word article by Watson and Crick titled 
“A Structure for Deoxyribose Nucleic Acid.” Accompanying it were separate articles by 
Wilkins and Franklin. It was an eventful time in the world—Edmund Hillary was just about to 
clamber to the top of Everest while Elizabeth II was imminently to be crowned queen of 
England—so the discovery of the secret of life was mostly overlooked. It received a small 
mention in the News Chronicle and was ignored elsewhere. 

    Rosalind Franklin did not share in the Nobel Prize. She died of ovarian cancer at the age of 
just thirty-seven in 1958, four years before the award was granted. Nobel Prizes are not 
awarded posthumously. The cancer almost certainly arose as a result of chronic overexposure 
to X-rays through her work and needn’t have happened. In her much-praised 2002 biography 
of Franklin, Brenda Maddox noted that Franklin rarely wore a lead apron and often stepped 
carelessly in front of a beam. Oswald Avery never won a Nobel Prize either and was also 
largely overlooked by posterity, though he did at least have the satisfaction of living just long 
enough to see his findings vindicated. He died in 1955. 

     Watson and Crick’s discovery wasn’t actually confirmed until the 1980s. As Crick said in 
one of his books: “It took over twenty-five years for our model of DNA to go from being only 
rather plausible, to being very plausible . . . and from there to being virtually certainly 
correct.” 

    Even so, with the structure of DNA understood progress in genetics was swift, and by 1968 
the journal Science could run an article titled “That Was the Molecular Biology That Was,” 
suggesting—it hardly seems possible, but it is so—that the work of genetics was nearly at an 
end. 

    In fact, of course, it was only just beginning. Even now there is a great deal about DNA that 
we scarcely understand, not least why so much of it doesn’t actually seem to do anything. 
Ninety-seven percent of your DNA consists of nothing but long stretches of meaningless 
garble—“junk,” or “non-coding DNA,” as biochemists prefer to put it. Only here and there 
along each strand do you find sections that control and organize vital functions. These are the 
curious and long-elusive genes. 

    Genes are nothing more (nor less) than instructions to make proteins. This they do with a 
certain dull fidelity. In this sense, they are rather like the keys of a piano, each playing a 
single note and nothing else, which is obviously a trifle monotonous. But combine the genes, 
as you would combine piano keys, and you can create chords and melodies of infinite variety. 
Put all these genes together, and you have (to continue the metaphor) the great symphony of 
existence known as the human genome. 

    An alternative and more common way to regard the genome is as a kind of instruction 
manual for the body. Viewed this way, the chromosomes can be imagined as the book’s 
chapters and the genes as individual instructions for making proteins. The words in which the 



instructions are written are called codons, and the letters are known as bases. The bases—the 
letters of the genetic alphabet—consist of the four nucleotides mentioned a page or two back: 
adenine, thiamine, guanine, and cytosine. Despite the importance of what they do, these 
substances are not made of anything exotic. Guanine, for instance, is the same stuff that 
abounds in, and gives its name to, guano. 

    The shape of a DNA molecule, as everyone knows, is rather like a spiral staircase or 
twisted rope ladder: the famous double helix. The uprights of this structure are made of a type 
of sugar called deoxyribose, and the whole of the helix is a nucleic acid—hence the name 
“deoxyribonucleic acid.” The rungs (or steps) are formed by two bases joining across the 
space between, and they can combine in only two ways: guanine is always paired with 
cytosine and thiamine always with adenine. The order in which these letters appear as you 
move up or down the ladder constitutes the DNA code; logging it has been the job of the 
Human Genome Project. 

    Now the particular brilliance of DNA lies in its manner of replication. When it is time to 
produce a new DNA molecule, the two strands part down the middle, like the zipper on a 
jacket, and each half goes off to form a new partnership. Because each nucleotide along a 
strand pairs up with a specific other nucleotide, each strand serves as a template for the 
creation of a new matching strand. If you possessed just one strand of your own DNA, you 
could easily enough reconstruct the matching side by working out the necessary partnerships: 
if the topmost rung on one strand was made of guanine, then you would know that the 
topmost rung on the matching strand must be cytosine. Work your way down the ladder 
through all the nucleotide pairings, and eventually you would have the code for a new 
molecule. That is just what happens in nature, except that nature does it really quickly—in 
only a matter of seconds, which is quite a feat. 

    Most of the time our DNA replicates with dutiful accuracy, but just occasionally—about 
one time in a million—a letter gets into the wrong place. This is known as a single nucleotide 
polymorphism, or SNP, familiarly known to biochemists as a “Snip.” Generally these Snips 
are buried in stretches of noncoding DNA and have no detectable consequence for the body. 
But occasionally they make a difference. They might leave you predisposed to some disease, 
but equally they might confer some slight advantage—more protective pigmentation, for 
instance, or increased production of red blood cells for someone living at altitude. Over time, 
these slight modifications accumulate in both individuals and in populations, contributing to 
the distinctiveness of both. 

    The balance between accuracy and errors in replication is a fine one. Too many errors and 
the organism can’t function, but too few and it sacrifices adaptability. A similar balance must 
exist between stability in an organism and innovation. An increase in red blood cells can help 
a person or group living at high elevations to move and breathe more easily because more red 
cells can carry more oxygen. But additional red cells also thicken the blood. Add too many, 
and “it’s like pumping oil,” in the words of Temple University anthropologist Charles Weitz. 
That’s hard on the heart. Thus those designed to live at high altitude get increased breathing 
efficiency, but pay for it with higher-risk hearts. By such means does Darwinian natural 
selection look after us. It also helps to explain why we are all so similar. Evolution simply 
won’t let you become too different—not without becoming a new species anyway. 

    The 0.1 percent difference between your genes and mine is accounted for by our Snips. 
Now if you compared your DNA with a third person’s, there would also be 99.9 percent 
correspondence, but the Snips would, for the most part, be in different places. Add more 



people to the comparison and you will get yet more Snips in yet more places. For every one of 
your 3.2 billion bases, somewhere on the planet there will be a person, or group of persons, 
with different coding in that position. So not only is it wrong to refer to “the” human genome, 
but in a sense we don’t even have “a” human genome. We have six billion of them. We are all 
99.9 percent the same, but equally, in the words of the biochemist David Cox, “you could say 
all humans share nothing, and that would be correct, too.” 

    But we have still to explain why so little of that DNA has any discernible purpose. It starts 
to get a little unnerving, but it does really seem that the purpose of life is to perpetuate DNA. 
The 97 percent of our DNA commonly called junk is largely made up of clumps of letters 
that, in Ridley’s words, “exist for the pure and simple reason that they are good at getting 
themselves duplicated.”2 Most of your DNA, in other words, is not devoted to you but to 
itself: you are a machine for reproducing it, not it for you. Life, you will recall, just wants to 
be, and DNA is what makes it so. 

    Even when DNA includes instructions for making genes—when it codes for them, as 
scientists put it—it is not necessarily with the smooth functioning of the organism in mind. 
One of the commonest genes we have is for a protein called reverse transcriptase, which has 
no known beneficial function in human beings at all. The one thing itdoes do is make it 
possible for retroviruses, such as the AIDS virus, to slip unnoticed into the human system. 

    In other words, our bodies devote considerable energies to producing a protein that does 
nothing that is beneficial and sometimes clobbers us. Our bodies have no choice but to do so 
because the genes order it. We are vessels for their whims. Altogether, almost half of human 
genes—the largest proportion yet found in any organism—don’t do anything at all, as far as 
we can tell, except reproduce themselves. 

    All organisms are in some sense slaves to their genes. That’s why salmon and spiders and 
other types of creatures more or less beyond counting are prepared to die in the process of 
mating. The desire to breed, to disperse one’s genes, is the most powerful impulse in nature. 
As Sherwin B. Nuland has put it: “Empires fall, ids explode, great symphonies are written, 
and behind all of it is a single instinct that demands satisfaction.” From an evolutionary point 
of view, sex is really just a reward mechanism to encourage us to pass on our genetic material. 

     Scientists had only barely absorbed the surprising news that most of our DNA doesn’t do 
anything when even more unexpected findings began to turn up. First in Germany and then in 
Switzerland researchers performed some rather bizarre experiments that produced curiously 
unbizarre outcomes. In one they took the gene that controlled the development of a mouse’s 
eye and inserted it into the larva of a fruit fly. The thought was that it might produce 
something interestingly grotesque. In fact, the mouse-eye gene not only made a viable eye in 
the fruit fly, it made a fly’s eye. Here were two creatures that hadn’t shared a common 
ancestor for 500 million years, yet could swap genetic material as if they were sisters. 

    The story was the same wherever researchers looked. They found that they could insert 
human DNA into certain cells of flies, and the flies would accept it as if it were their own. 

                                                 
2 Junk DNA does have a use. It is the portion employed in DNA fingerprinting. Its practicality for this purpose 
was discovered accidentally by Alec Jeffreys, a scientist at the University of Leicester in England. In 1986 
Jeffreys was studying DNA sequences for genetic markers associated with heritable diseases when he was 
approached by the police and asked if he could help connect a suspect to two murders. He realized his technique 
ought to work perfectly for solving criminal cases-and so it proved. A young baker with the improbable name of 
Colin Pitchfork was sentenced to two life terms in prison for the murders. 



Over 60 percent of human genes, it turns out, are fundamentally the same as those found in 
fruit flies. At least 90 percent correlate at some level to those found in mice. (We even have 
the same genes for making a tail, if only they would switch on.) In field after field, 
researchers found that whatever organism they were working on—whether nematode worms 
or human beings—they were often studying essentially the same genes. Life, it appeared, was 
drawn up from a single set of blueprints. 

    Further probings revealed the existence of a clutch of master control genes, each directing 
the development of a section of the body, which were dubbed homeotic (from a Greek word 
meaning “similar”) or hox genes. Hox genes answered the long-bewildering question of how 
billions of embryonic cells, all arising from a single fertilized egg and carrying identical 
DNA, know where to go and what to do—that this one should become a liver cell, this one a 
stretchy neuron, this one a bubble of blood, this one part of the shimmer on a beating wing. It 
is the hox genes that instruct them, and they do it for all organisms in much the same way. 

    Interestingly, the amount of genetic material and how it is organized doesn’t necessarily, or 
even generally, reflect the level of sophistication of the creature that contains it. We have 
forty-six chromosomes, but some ferns have more than six hundred. The lungfish, one of the 
least evolved of all complex animals, has forty times as much DNA as we have. Even the 
common newt is more genetically splendorous than we are, by a factor of five. 

    Clearly it is not the number of genes you have, but what you do with them. This is a very 
good thing because the number of genes in humans has taken a big hit lately. Until recently it 
was thought that humans had at least 100,000 genes, possibly a good many more, but that 
number was drastically reduced by the first results of the Human Genome Project, which 
suggested a figure more like 35,000 or 40,000 genes—about the same number as are found in 
grass. That came as both a surprise and a disappointment. 

    It won’t have escaped your attention that genes have been commonly implicated in any 
number of human frailties. Exultant scientists have at various times declared themselves to 
have found the genes responsible for obesity, schizophrenia, homosexuality, criminality, 
violence, alcoholism, even shoplifting and homelessness. Perhaps the apogee (or nadir) of this 
faith in biodeterminism was a study published in the journal Science in 1980 contending that 
women are genetically inferior at mathematics. In fact, we now know, almost nothing about 
you is so accommodatingly simple. 

    This is clearly a pity in one important sense, for if you had individual genes that determined 
height or propensity to diabetes or to baldness or any other distinguishing trait, then it would 
be easy—comparatively easy anyway—to isolate and tinker with them. Unfortunately, thirty-
five thousand genes functioning independently is not nearly enough to produce the kind of 
physical complexity that makes a satisfactory human being. Genes clearly therefore must 
cooperate. A few disorders—hemophilia, Parkinson’s disease, Huntington’s disease, and 
cystic fibrosis, for example—are caused by lone dysfunctional genes, but as a rule disruptive 
genes are weeded out by natural selection long before they can become permanently 
troublesome to a species or population. For the most part our fate and comfort—and even our 
eye color—are determined not by individual genes but by complexes of genes working in 
alliance. That’s why it is so hard to work out how it all fits together and why we won’t be 
producing designer babies anytime soon. 

    In fact, the more we have learned in recent years the more complicated matters have tended 
to become. Even thinking, it turns out, affects the ways genes work. How fast a man’s beard 



grows, for instance, is partly a function of how much he thinks about sex (because thinking 
about sex produces a testosterone surge). In the early 1990s, scientists made an even more 
profound discovery when they found they could knock out supposedly vital genes from 
embryonic mice, and the mice were not only often born healthy, but sometimes were actually 
fitter than their brothers and sisters who had not been tampered with. When certain important 
genes were destroyed, it turned out, others were stepping in to fill the breach. This was 
excellent news for us as organisms, but not so good for our understanding of how cells work 
since it introduced an extra layer of complexity to something that we had barely begun to 
understand anyway. 

    It is largely because of these complicating factors that cracking the human genome became 
seen almost at once as only a beginning. The genome, as Eric Lander of MIT has put it, is like 
a parts list for the human body: it tells us what we are made of, but says nothing about how 
we work. What’s needed now is the operating manual—instructions for how to make it go. 
We are not close to that point yet. 

    So now the quest is to crack the human proteome—a concept so novel that the term 
proteome didn’t even exist a decade ago. The proteome is the library of information that 
creates proteins. “Unfortunately,” observed Scientific American in the spring of 2002, “the 
proteome is much more complicated than the genome.” 

    That’s putting it mildly. Proteins, you will remember, are the workhorses of all living 
systems; as many as a hundred million of them may be busy in any cell at any moment. That’s 
a lot of activity to try to figure out. Worse, proteins’ behavior and functions are based not 
simply on their chemistry, as with genes, but also on their shapes. To function, a protein must 
not only have the necessary chemical components, properly assembled, but then must also be 
folded into an extremely specific shape. “Folding” is the term that’s used, but it’s a 
misleading one as it suggests a geometrical tidiness that doesn’t in fact apply. Proteins loop 
and coil and crinkle into shapes that are at once extravagant and complex. They are more like 
furiously mangled coat hangers than folded towels. 

    Moreover, proteins are (if I may be permitted to use a handy archaism) the swingers of the 
biological world. Depending on mood and metabolic circumstance, they will allow 
themselves to be phosphorylated, glycosylated, acetylated, ubiquitinated, farneysylated, 
sulfated, and linked to glycophosphatidylinositol anchors, among rather a lot else. Often it 
takes relatively little to get them going, it appears. Drink a glass of wine, as Scientific 
American notes, and you materially alter the number and types of proteins at large in your 
system. This is a pleasant feature for drinkers, but not nearly so helpful for geneticists who are 
trying to understand what is going on. 

    It can all begin to seem impossibly complicated, and in some ways itis impossibly 
complicated. But there is an underlying simplicity in all this, too, owing to an equally 
elemental underlying unity in the way life works. All the tiny, deft chemical processes that 
animate cells—the cooperative efforts of nucleotides, the transcription of DNA into RNA—
evolved just once and have stayed pretty well fixed ever since across the whole of nature. As 
the late French geneticist Jacques Monod put it, only half in jest: “Anything that is true of E. 
coli must be true of elephants, except more so.” 

    Every living thing is an elaboration on a single original plan. As humans we are mere 
increments—each of us a musty archive of adjustments, adaptations, modifications, and 
providential tinkerings stretching back 3.8 billion years. Remarkably, we are even quite 



closely related to fruit and vegetables. About half the chemical functions that take place in a 
banana are fundamentally the same as the chemical functions that take place in you. 

    It cannot be said too often: all life is one. That is, and I suspect will forever prove to be, the 
most profound true statement there is. 

 

 

 



 

 

PART  VI    THE ROAD TO US 

 

 

 

    Descended from the apes! My dear,  
    let us hope that it is not true, but if it is,  
    let us pray that it will not become  
    generally known. 
 
      -Remark attributed to the wife of 
      the Bishop of Worcester after 
      Darwin’s theory of evolution was 
      Explained to her



27    ICE TIME 

 

 

 

I had a dream, which was not  
   all a dream. 
The bright sun was  
   extinguish’d, and the stars 
Did wander . . . 
—Byron, “Darkness” 

 

IN 1815 on the island of Sumbawa in Indonesia, a handsome and long-quiescent mountain 
named Tambora exploded spectacularly, killing a hundred thousand people with its blast and 
associated tsunamis. It was the biggest volcanic explosion in ten thousand years—150 times 
the size of Mount St. Helens, equivalent to sixty thousand Hiroshima-sized atom bombs. 

    News didn’t travel terribly fast in those days. In London, The Times ran a small story—
actually a letter from a merchant—seven months after the event. But by this time Tambora’s 
effects were already being felt. Thirty-six cubic miles of smoky ash, dust, and grit had 
diffused through the atmosphere, obscuring the Sun’s rays and causing the Earth to cool. 
Sunsets were unusually but blearily colorful, an effect memorably captured by the artist J. M. 
W. Turner, who could not have been happier, but mostly the world existed under an 
oppressive, dusky pall. It was this deathly dimness that inspired the Byron lines above. 

    Spring never came and summer never warmed: 1816 became known as the year without 
summer. Crops everywhere failed to grow. In Ireland a famine and associated typhoid 
epidemic killed sixty-five thousand people. In New England, the year became popularly 
known as Eighteen Hundred and Froze to Death. Morning frosts continued until June and 
almost no planted seed would grow. Short of fodder, livestock died or had to be prematurely 
slaughtered. In every way it was a dreadful year—almost certainly the worst for farmers in 
modern times. Yet globally the temperature fell by only about 1.5 degrees Fahrenheit. Earth’s 
natural thermostat, as scientists would learn, is an exceedingly delicate instrument. 

    The nineteenth century was already a chilly time. For two hundred years Europe and North 
America in particular had experienced a Little Ice Age, as it has become known, which 
permitted all kinds of wintry events—frost fairs on the Thames, ice-skating races along Dutch 
canals—that are mostly impossible now. It was a period, in other words, when frigidity was 
much on people’s minds. So we may perhaps excuse nineteenth-century geologists for being 
slow to realize that the world they lived in was in fact balmy compared with former epochs, 
and that much of the land around them had been shaped by crushing glaciers and cold that 
would wreck even a frost fair. 

    They knew there was something odd about the past. The European landscape was littered 
with inexplicable anomalies—the bones of arctic reindeer in the warm south of France, huge 
rocks stranded in improbable places—and they often came up with inventive but not terribly 



plausible explanations. One French naturalist named de Luc, trying to explain how granite 
boulders had come to rest high up on the limestone flanks of the Jura Mountains, suggested 
that perhaps they had been shot there by compressed air in caverns, like corks out of a 
popgun. The term for a displaced boulder is an erratic, but in the nineteenth century the 
expression seemed to apply more often to the theories than to the rocks. 

    The great British geologist Arthur Hallam has suggested that if James Hutton, the father of 
geology, had visited Switzerland, he would have seen at once the significance of the carved 
valleys, the polished striations, the telltale strand lines where rocks had been dumped, and the 
other abundant clues that point to passing ice sheets. Unfortunately, Hutton was not a traveler. 
But even with nothing better at his disposal than secondhand accounts, Hutton rejected out of 
hand the idea that huge boulders had been carried three thousand feet up mountainsides by 
floods—all the water in the world won’t make a boulder float, he pointed out—and became 
one of the first to argue for widespread glaciation. Unfortunately his ideas escaped notice, and 
for another half century most naturalists continued to insist that the gouges on rocks could be 
attributed to passing carts or even the scrape of hobnailed boots. 

    Local peasants, uncontaminated by scientific orthodoxy, knew better, however. The 
naturalist Jean de Charpentier told the story of how in 1834 he was walking along a country 
lane with a Swiss woodcutter when they got to talking about the rocks along the roadside. The 
woodcutter matter-of-factly told him that the boulders had come from the Grimsel, a zone of 
granite some distance away. “When I asked him how he thought that these stones had reached 
their location, he answered without hesitation: ‘The Grimsel glacier transported them on both 
sides of the valley, because that glacier extended in the past as far as the town of Bern.’ ” 

    Charpentier was delighted. He had come to such a view himself, but when he raised the 
notion at scientific gatherings, it was dismissed. One of Charpentier’s closest friends was 
another Swiss naturalist, Louis Agassiz, who after some initial skepticism came to embrace, 
and eventually all but appropriate, the theory. 

    Agassiz had studied under Cuvier in Paris and now held the post of Professor of Natural 
History at the College of Neuchâtel in Switzerland. Another friend of Agassiz’s, a botanist 
named Karl Schimper, was actually the first to coin the term ice age (in German Eiszeit ), in 
1837, and to propose that there was good evidence to show that ice had once lain heavily 
across not just the Swiss Alps, but over much of Europe, Asia, and North America. It was a 
radical notion. He lent Agassiz his notes—then came very much to regret it as Agassiz 
increasingly got the credit for what Schimper felt, with some legitimacy, was his theory. 
Charpentier likewise ended up a bitter enemy of his old friend. Alexander von Humboldt, yet 
another friend, may have had Agassiz at least partly in mind when he observed that there are 
three stages in scientific discovery: first, people deny that it is true; then they deny that it is 
important; finally they credit the wrong person. 

    At all events, Agassiz made the field his own. In his quest to understand the dynamics of 
glaciation, he went everywhere—deep into dangerous crevasses and up to the summits of the 
craggiest Alpine peaks, often apparently unaware that he and his team were the first to climb 
them. Nearly everywhere Agassiz encountered an unyielding reluctance to accept his theories. 
Humboldt urged him to return to his area of real expertise, fossil fish, and give up this mad 
obsession with ice, but Agassiz was a man possessed by an idea. 

    Agassiz’s theory found even less support in Britain, where most naturalists had never seen 
a glacier and often couldn’t grasp the crushing forces that ice in bulk exerts. “Could scratches 



and polish just be due to ice ?” asked Roderick Murchison in a mocking tone at one meeting, 
evidently imagining the rocks as covered in a kind of light and glassy rime. To his dying day, 
he expressed the frankest incredulity at those “ice-mad” geologists who believed that glaciers 
could account for so much. William Hopkins, a Cambridge professor and leading member of 
the Geological Society, endorsed this view, arguing that the notion that ice could transport 
boulders presented “such obvious mechanical absurdities” as to make it unworthy of the 
society’s attention. 

    Undaunted, Agassiz traveled tirelessly to promote his theory. In 1840 he read a paper to a 
meeting of the British Association for the Advancement of Science in Glasgow at which he 
was openly criticized by the great Charles Lyell. The following year the Geological Society of 
Edinburgh passed a resolution conceding that there might be some general merit in the theory 
but that certainly none of it applied to Scotland. 

    Lyell did eventually come round. His moment of epiphany came when he realized that a 
moraine, or line of rocks, near his family estate in Scotland, which he had passed hundreds of 
times, could only be understood if one accepted that a glacier had dropped them there. But 
having become converted, Lyell then lost his nerve and backed off from public support of the 
Ice Age idea. It was a frustrating time for Agassiz. His marriage was breaking up, Schimper 
was hotly accusing him of the theft of his ideas, Charpentier wouldn’t speak to him, and the 
greatest living geologist offered support of only the most tepid and vacillating kind. 

    In 1846, Agassiz traveled to America to give a series of lectures and there at last found the 
esteem he craved. Harvard gave him a professorship and built him a first-rate museum, the 
Museum of Comparative Zoology. Doubtless it helped that he had settled in New England, 
where the long winters encouraged a certain sympathy for the idea of interminable periods of 
cold. It also helped that six years after his arrival the first scientific expedition to Greenland 
reported that nearly the whole of that semicontinent was covered in an ice sheet just like the 
ancient one imagined in Agassiz’s theory. At long last, his ideas began to find a real 
following. The one central defect of Agassiz’s theory was that his ice ages had no cause. But 
assistance was about to come from an unlikely quarter. 

    In the 1860s, journals and other learned publications in Britain began to receive papers on 
hydrostatics, electricity, and other scientific subjects from a James Croll of Anderson’s 
University in Glasgow. One of the papers, on how variations in Earth’s orbit might have 
precipitated ice ages, was published in the Philosophical Magazine in 1864 and was 
recognized at once as a work of the highest standard. So there was some surprise, and perhaps 
just a touch of embarrassment, when it turned out that Croll was not an academic at the 
university, but a janitor. 

    Born in 1821, Croll grew up poor, and his formal education lasted only to the age of 
thirteen. He worked at a variety of jobs—as a carpenter, insurance salesman, keeper of a 
temperance hotel—before taking a position as a janitor at Anderson’s (now the University of 
Strathclyde) in Glasgow. By somehow inducing his brother to do much of his work, he was 
able to pass many quiet evenings in the university library teaching himself physics, 
mechanics, astronomy, hydrostatics, and the other fashionable sciences of the day, and 
gradually began to produce a string of papers, with a particular emphasis on the motions of 
Earth and their effect on climate. 

    Croll was the first to suggest that cyclical changes in the shape of Earth’s orbit, from 
elliptical (which is to say slightly oval) to nearly circular to elliptical again, might explain the 



onset and retreat of ice ages. No one had ever thought before to consider an astronomical 
explanation for variations in Earth’s weather. Thanks almost entirely to Croll’s persuasive 
theory, people in Britain began to become more responsive to the notion that at some former 
time parts of the Earth had been in the grip of ice. When his ingenuity and aptitude were 
recognized, Croll was given a job at the Geological Survey of Scotland and widely honored: 
he was made a fellow of the Royal Society in London and of the New York Academy of 
Science and given an honorary degree from the University of St. Andrews, among much else. 

    Unfortunately, just as Agassiz’s theory was at last beginning to find converts in Europe, he 
was busy taking it into ever more exotic territory in America. He began to find evidence for 
glaciers practically everywhere he looked, including near the equator. Eventually he became 
convinced that ice had once covered the whole Earth, extinguishing all life, which God had 
then re-created. None of the evidence Agassiz cited supported such a view. Nonetheless, in 
his adopted country his stature grew and grew until he was regarded as only slightly below a 
deity. When he died in 1873 Harvard felt it necessary to appoint three professors to take his 
place. 

    Yet, as sometimes happens, his theories fell swiftly out of fashion. Less than a decade after 
his death his successor in the chair of geology at Harvard wrote that the “so-called glacial 
epoch . . . so popular a few years ago among glacial geologists may now be rejected without 
hesitation.” 

     Part of the problem was that Croll’s computations suggested that the most recent ice age 
occurred eighty thousand years ago, whereas the geological evidence increasingly indicated 
that Earth had undergone some sort of dramatic perturbation much more recently than that. 
Without a plausible explanation for what might have provoked an ice age, the whole theory 
fell into abeyance. There it might have remained for some time except that in the early 1900s 
a Serbian academic named Milutin Milankovitch, who had no background in celestial motions 
at all—he was a mechanical engineer by training—developed an unexpected interest in the 
matter. Milankovitch realized that the problem with Croll’s theory was not that it was 
incorrect but that it was too simple. 

    As Earth moves through space, it is subject not just to variations in the length and shape of 
its orbit, but also to rhythmic shifts in its angle of orientation to the Sun—its tilt and pitch and 
wobble—all affecting the length and intensity of sunlight falling on any patch of land. In 
particular it is subject to three changes in position, known formally as its obliquity, 
precession, and eccentricity, over long periods of time. Milankovitch wondered if there might 
be a relationship between these complex cycles and the comings and goings of ice ages. The 
difficulty was that the cycles were of widely different lengths—of approximately 20,000, 
40,000, and 100,000 years, but varying in each case by up to a few thousand years—which 
meant that determining their points of intersection over long spans of time involved a nearly 
endless amount of devoted computation. Essentially Milankovitch had to work out the angle 
and duration of incoming solar radiation at every latitude on Earth, in every season, for a 
million years, adjusted for three ever-changing variables. 

    Happily this was precisely the sort of repetitive toil that suited Milankovitch’s 
temperament. For the next twenty years, even while on vacation, he worked ceaselessly with 
pencil and slide rule computing the tables of his cycles—work that now could be completed in 
a day or two with a computer. The calculations all had to be made in his spare time, but in 
1914 Milankovitch suddenly got a great deal of that when World War I broke out and he was 
arrested owing to his position as a reservist in the Serbian army. He spent most of the next 



four years under loose house arrest in Budapest, required only to report to the police once a 
week. The rest of his time was spent working in the library of the Hungarian Academy of 
Sciences. He was possibly the happiest prisoner of war in history. 

    The eventual outcome of his diligent scribblings was the 1930 book Mathematical 
Climatology and the Astronomical Theory of Climatic Changes. Milankovitch was right that 
there was a relationship between ice ages and planetary wobble, though like most people he 
assumed that it was a gradual increase in harsh winters that led to these long spells of 
coldness. It was a Russian-German meteorologist, Wladimir Köppen—father-in-law of our 
tectonic friend Alfred Wegener—who saw that the process was more subtle, and rather more 
unnerving, than that. 

    The cause of ice ages, Köppen decided, is to be found in cool summers, not brutal winters. 
If summers are too cool to melt all the snow that falls on a given area, more incoming sunlight 
is bounced back by the reflective surface, exacerbating the cooling effect and encouraging yet 
more snow to fall. The consequence would tend to be self-perpetuating. As snow accumulated 
into an ice sheet, the region would grow cooler, prompting more ice to accumulate. As the 
glaciologist Gwen Schultz has noted: “It is not necessarily the amount of snow that causes ice 
sheets but the fact that snow, however little, lasts.” It is thought that an ice age could start 
from a single unseasonal summer. The leftover snow reflects heat and exacerbates the chilling 
effect. “The process is self-enlarging, unstoppable, and once the ice is really growing it 
moves,” says McPhee. You have advancing glaciers and an ice age. 

    In the 1950s, because of imperfect dating technology, scientists were unable to correlate 
Milankovitch’s carefully worked-out cycles with the supposed dates of ice ages as then 
perceived, and so Milankovitch and his calculations increasingly fell out of favor. He died in 
1958, unable to prove that his cycles were correct. By this time, write John and Mary Gribbin, 
“you would have been hard pressed to find a geologist or meteorologist who regarded the 
model as being anything more than an historical curiosity.” Not until the 1970s and the 
refinement of a potassium-argon method for dating ancient seafloor sediments were his 
theories finally vindicated. 

    The Milankovitch cycles alone are not enough to explain cycles of ice ages. Many other 
factors are involved—not least the disposition of the continents, in particular the presence of 
landmasses over the poles—but the specifics of these are imperfectly understood. It has been 
suggested, however, that if you hauled North America, Eurasia, and Greenland just three 
hundred miles north we would have permanent and inescapable ice ages. We are very lucky, it 
appears, to get any good weather at all. Even less well understood are the cycles of 
comparative balminess within ice ages, known as interglacials. It is mildly unnerving to 
reflect that the whole of meaningful human history—the development of farming, the creation 
of towns, the rise of mathematics and writing and science and all the rest—has taken place 
within an atypical patch of fair weather. Previous interglacials have lasted as little as eight 
thousand years. Our own has already passed its ten thousandth anniversary. 

    The fact is, we are still very much in an ice age; it’s just a somewhat shrunken one—though 
less shrunken than many people realize. At the height of the last period of glaciation, around 
twenty thousand years ago, about 30 percent of the Earth’s land surface was under ice. Ten 
percent still is—and a further 14 percent is in a state of permafrost. Three-quarters of all the 
fresh water on Earth is locked up in ice even now, and we have ice caps at both poles—a 
situation that may be unique in Earth’s history. That there are snowy winters through much of 



the world and permanent glaciers even in temperate places such as New Zealand may seem 
quite natural, but in fact it is a most unusual situation for the planet. 

    For most of its history until fairly recent times the general pattern for Earth was to be hot 
with no permanent ice anywhere. The current ice age—ice epoch really—started about forty 
million years ago, and has ranged from murderously bad to not bad at all. Ice ages tend to 
wipe out evidence of earlier ice ages, so the further back you go the more sketchy the picture 
grows, but it appears that we have had at least seventeen severe glacial episodes in the last 2.5 
million years or so—the period that coincides with the rise of Homo erectus in Africa 
followed by modern humans. Two commonly cited culprits for the present epoch are the rise 
of the Himalayas and the formation of the Isthmus of Panama, the first disrupting air flows, 
the second ocean currents. India, once an island, has pushed two thousand kilometers into the 
Asian landmass over the last forty-five million years, raising not only the Himalayas, but also 
the vast Tibetan plateau behind them. The hypothesis is that the higher landscape was not 
only cooler, but diverted winds in a way that made them flow north and toward North 
America, making it more susceptible to long-term chills. Then, beginning about five million 
years ago, Panama rose from the sea, closing the gap between North and South America, 
disrupting the flows of warming currents between the Pacific and Atlantic, and changing 
patterns of precipitation across at least half the world. One consequence was a drying out of 
Africa, which caused apes to climb down out of trees and go looking for a new way of living 
on the emerging savannas. 

    At all events, with the oceans and continents arranged as they are now, it appears that ice 
will be a long-term part of our future. According to John McPhee, about fifty more glacial 
episodes can be expected, each lasting a hundred thousand years or so, before we can hope for 
a really long thaw. 

    Before fifty million years ago, Earth had no regular ice ages, but when we did have them 
they tended to be colossal. A massive freezing occurred about 2.2 billion years ago, followed 
by a billion years or so of warmth. Then there was another ice age even larger than the first—
so large that some scientists are now referring to the age in which it occurred as the 
Cryogenian, or super ice age. The condition is more popularly known as Snowball Earth. 

    “Snowball,” however, barely captures the murderousness of conditions. The theory is that 
because of a fall in solar radiation of about 6 percent and a dropoff in the production (or 
retention) of greenhouse gases, Earth essentially lost its ability to hold on to its heat. It 
became a kind of all-over Antarctica. Temperatures plunged by as much as 80 degrees 
Fahrenheit. The entire surface of the planet may have frozen solid, with ocean ice up to half a 
mile thick at higher latitudes and tens of yards thick even in the tropics. 

    There is a serious problem in all this in that the geological evidence indicates ice 
everywhere, including around the equator, while the biological evidence suggests just as 
firmly that there must have been open water somewhere. For one thing, cyanobacteria 
survived the experience, and they photosynthesize. For that they needed sunlight, but as you 
will know if you have ever tried to peer through it, ice quickly becomes opaque and after only 
a few yards would pass on no light at all. Two possibilities have been suggested. One is that a 
little ocean water did remain exposed (perhaps because of some kind of localized warming at 
a hot spot); the other is that maybe the ice formed in such a way that it remained translucent—
a condition that does sometimes happen in nature. 



    If Earth did freeze over, then there is the very difficult question of how it ever got warm 
again. An icy planet should reflect so much heat that it would stay frozen forever. It appears 
that rescue may have come from our molten interior. Once again, we may be indebted to 
tectonics for allowing us to be here. The idea is that we were saved by volcanoes, which 
pushed through the buried surface, pumping out lots of heat and gases that melted the snows 
and re-formed the atmosphere. Interestingly, the end of this hyper-frigid episode is marked by 
the Cambrian outburst—the springtime event of life’s history. In fact, it may not have been as 
tranquil as all that. As Earth warmed, it probably had the wildest weather it has ever 
experienced, with hurricanes powerful enough to raise waves to the heights of skyscrapers 
and rainfalls of indescribable intensity. 

    Throughout all this the tubeworms and clams and other life forms adhering to deep ocean 
vents undoubtedly went on as if nothing were amiss, but all other life on Earth probably came 
as close as it ever has to checking out entirely. It was all a long time ago and at this stage we 
just don’t know. 

    Compared with a Cryogenian outburst, the ice ages of more recent times seem pretty small 
scale, but of course they were immensely grand by the standards of anything to be found on 
Earth today. The Wisconsian ice sheet, which covered much of Europe and North America, 
was two miles thick in places and marched forward at a rate of about four hundred feet a year. 
What a thing it must have been to behold. Even at their leading edge, the ice sheets could be 
nearly half a mile thick. Imagine standing at the base of a wall of ice two thousand feet high. 
Behind this edge, over an area measuring in the millions of square miles, would be nothing 
but more ice, with only a few of the tallest mountain summits poking through. Whole 
continents sagged under the weight of so much ice and even now, twelve thousand years after 
the glaciers’ withdrawal, are still rising back into place. The ice sheets didn’t just dribble out 
boulders and long lines of gravelly moraines, but dumped entire landmasses—Long Island 
and Cape Cod and Nantucket, among others—as they slowly swept along. It’s little wonder 
that geologists before Agassiz had trouble grasping their monumental capacity to rework 
landscapes. 

    If ice sheets advanced again, we have nothing in our armory that could deflect them. In 
1964, at Prince William Sound in Alaska, one of the largest glacial fields in North America 
was hit by the strongest earthquake ever recorded on the continent. It measured 9.2 on the 
Richter scale. Along the fault line, the land rose by as much as twenty feet. The quake was so 
violent, in fact, that it made water slosh out of pools in Texas. And what effect did this 
unparalleled outburst have on the glaciers of Prince William Sound? None at all. They just 
soaked it up and kept on moving. 

     For a long time it was thought that we moved into and out of ice ages gradually, over 
hundreds of thousands of years, but we now know that that has not been the case. Thanks to 
ice cores from Greenland we have a detailed record of climate for something over a hundred 
thousand years, and what is found there is not comforting. It shows that for most of its recent 
history Earth has been nothing like the stable and tranquil place that civilization has known, 
but rather has lurched violently between periods of warmth and brutal chill. 

    Toward the end of the last big glaciation, some twelve thousand years ago, Earth began to 
warm, and quite rapidly, but then abruptly plunged back into bitter cold for a thousand years 
or so in an event known to science as the Younger Dryas. (The name comes from the arctic 
plant the dryas, which is one of the first to recolonize land after an ice sheet withdraws. There 
was also an Older Dryas period, but it wasn’t so sharp.) At the end of this thousand-year 



onslaught average temperatures leapt again, by as much as seven degrees in twenty years, 
which doesn’t sound terribly dramatic but is equivalent to exchanging the climate of 
Scandinavia for that of the Mediterranean in just two decades. Locally, changes have been 
even more dramatic. Greenland ice cores show the temperatures there changing by as much as 
fifteen degrees in ten years, drastically altering rainfall patterns and growing conditions. This 
must have been unsettling enough on a thinly populated planet. Today the consequences 
would be pretty well unimaginable. 

    What is most alarming is that we have no idea—none—what natural phenomena could so 
swiftly rattle Earth’s thermometer. As Elizabeth Kolbert, writing in the New Yorker, has 
observed: “No known external force, or even any that has been hypothesized, seems capable 
of yanking the temperature back and forth as violently, and as often, as these cores have 
shown to be the case.” There seems to be, she adds, “some vast and terrible feedback loop,” 
probably involving the oceans and disruptions of the normal patterns of ocean circulation, but 
all this is a long way from being understood. 

    One theory is that the heavy inflow of meltwater to the seas at the beginning of the 
Younger Dryas reduced the saltiness (and thus density) of northern oceans, causing the Gulf 
Stream to swerve to the south, like a driver trying to avoid a collision. Deprived of the Gulf 
Stream’s warmth, the northern latitudes returned to chilly conditions. But this doesn’t begin to 
explain why a thousand years later when the Earth warmed once again the Gulf Stream didn’t 
veer as before. Instead, we were given the period of unusual tranquility known as the 
Holocene, the time in which we live now. 

    There is no reason to suppose that this stretch of climatic stability should last much longer. 
In fact, some authorities believe that we are in for even worse than what went before. It is 
natural to suppose that global warming would act as a useful counterweight to the Earth’s 
tendency to plunge back into glacial conditions. However, as Kolbert has pointed out, when 
you are confronted with a fluctuating and unpredictable climate “the last thing you’d want to 
do is conduct a vast unsupervised experiment on it.” It has even been suggested, with more 
plausibility than would at first seem evident, that an ice age might actually be induced by a 
rise in temperatures. The idea is that a slight warming would enhance evaporation rates and 
increase cloud cover, leading in the higher latitudes to more persistent accumulations of snow. 
In fact, global warming could plausibly, if paradoxically, lead to powerful localized cooling in 
North America and northern Europe. 

    Climate is the product of so many variables—rising and falling carbon dioxide levels, the 
shifts of continents, solar activity, the stately wobbles of the Milankovitch cycles—that it is as 
difficult to comprehend the events of the past as it is to predict those of the future. Much is 
simply beyond us. Take Antarctica. For at least twenty million years after it settled over the 
South Pole Antarctica remained covered in plants and free of ice. That simply shouldn’t have 
been possible. 

    No less intriguing are the known ranges of some late dinosaurs. The British geologist 
Stephen Drury notes that forests within 10 degrees latitude of the North Pole were home to 
great beasts, including Tyrannosaurus rex. “That is bizarre,” he writes, “for such a high 
latitude is continually dark for three months of the year.” Moreover, there is now evidence 
that these high latitudes suffered severe winters. Oxygen isotope studies suggest that the 
climate around Fairbanks, Alaska, was about the same in the late Cretaceous period as it is 
now. So what was Tyrannosaurus doing there? Either it migrated seasonally over enormous 
distances or it spent much of the year in snowdrifts in the dark. In Australia—which at that 



time was more polar in its orientation—a retreat to warmer climes wasn’t possible. How 
dinosaurs managed to survive in such conditions can only be guessed. 

    One thought to bear in mind is that if the ice sheets did start to form again for whatever 
reason, there is a lot more water for them to draw on this time. The Great Lakes, Hudson Bay, 
the countless lakes of Canada—these weren’t there to fuel the last ice age. They were created 
by it. 

    On the other hand, the next phase of our history could see us melting a lot of ice rather than 
making it. If all the ice sheets melted, sea levels would rise by two hundred feet—the height 
of a twenty-story building—and every coastal city in the world would be inundated. More 
likely, at least in the short term, is the collapse of the West Antarctic ice sheet. In the past fifty 
years the waters around it have warmed by 2.5 degrees centigrade, and collapses have 
increased dramatically. Because of the underlying geology of the area, a large-scale collapse 
is all the more possible. If so, sea levels globally would rise—and pretty quickly—by between 
fifteen and twenty feet on average. 

    The extraordinary fact is that we don’t know which is more likely, a future offering us eons 
of perishing frigidity or one giving us equal expanses of steamy heat. Only one thing is 
certain: we live on a knife edge. 

    In the long run, incidentally, ice ages are by no means bad news for the planet. They grind 
up rocks and leave behind new soils of sumptuous richness, and gouge out fresh water lakes 
that provide abundant nutritive possibilities for hundreds of species of being. They act as a 
spur to migration and keep the planet dynamic. As Tim Flannery has remarked: “There is only 
one question you need ask of a continent in order to determine the fate of its people: ‘Did you 
have a good ice age?’ ” And with that in mind, it’s time to look at a species of ape that truly 
did. 



28    THE MYSTERIOUS BIPED 

 

 

 

JUST BEFORE CHRISTMAS 1887, a young Dutch doctor with an un-Dutch name, Marie 
Eugène François Thomas Dubois, arrived in Sumatra, in the Dutch East Indies, with the 
intention of finding the earliest human remains on Earth.1  

    Several things were extraordinary about this. To begin with, no one had ever gone looking 
for ancient human bones before. Everything that had been found to this point had been found 
accidentally, and nothing in Dubois’s background suggested that he was the ideal candidate to 
make the process intentional. He was an anatomist by training with no background in 
paleontology. Nor was there any special reason to suppose that the East Indies would hold 
early human remains. Logic dictated that if ancient people were to be found at all, it would be 
on a large and long-populated landmass, not in the comparative fastness of an archipelago. 
Dubois was driven to the East Indies on nothing stronger than a hunch, the availability of 
employment, and the knowledge that Sumatra was full of caves, the environment in which 
most of the important hominid fossils had so far been found. What is most extraordinary in all 
this—nearly miraculous, really—is that he found what he was looking for. 

    At the time Dubois conceived his plan to search for a missing link, the human fossil record 
consisted of very little: five incomplete Neandertal skeletons, one partial jawbone of uncertain 
provenance, and a half-dozen ice-age humans recently found by railway workers in a cave at a 
cliff called Cro-Magnon near Les Eyzies, France. Of the Neandertal specimens, the best 
preserved was sitting unremarked on a shelf in London. It had been found by workers blasting 
rock from a quarry in Gibraltar in 1848, so its preservation was a wonder, but unfortunately 
no one yet appreciated what it was. After being briefly described at a meeting of the Gibraltar 
Scientific Society, it had been sent to the Hunterian Museum in London, where it remained 
undisturbed but for an occasional light dusting for over half a century. The first formal 
description of it wasn’t written until 1907, and then by a geologist named William Sollas 
“with only a passing competency in anatomy.” 

    So instead the name and credit for the discovery of the first early humans went to the 
Neander Valley in Germany—not unfittingly, as it happens, for by uncanny coincidence 
Neander in Greek means “new man.” There in 1856 workmen at another quarry, in a cliff face 
overlooking the Düssel River, found some curious-looking bones, which they passed to a 
local schoolteacher, knowing he had an interest in all things natural. To his great credit the 
teacher, Johann Karl Fuhlrott, saw that he had some new type of human, though quite what it 
was, and how special, would be matters of dispute for some time. 

    Many people refused to accept that the Neandertal bones were ancient at all. August Mayer, 
a professor at the University of Bonn and a man of influence, insisted that the bones were 

                                                 
1 Though Dutch, Dubois was from Eijsden, a town bordering the French-speaking part of Belgium. 
 



merely those of a Mongolian Cossack soldier who had been wounded while fighting in 
Germany in 1814 and had crawled into the cave to die. Hearing of this, T. H. Huxley in 
England drily observed how remarkable it was that the soldier, though mortally wounded, had 
climbed sixty feet up a cliff, divested himself of his clothing and personal effects, sealed the 
cave opening, and buried himself under two feet of soil. Another anthropologist, puzzling 
over the Neandertal’s heavy brow ridge, suggested that it was the result of long-term frowning 
arising from a poorly healed forearm fracture. (In their eagerness to reject the idea of earlier 
humans, authorities were often willing to embrace the most singular possibilities. At about the 
time that Dubois was setting out for Sumatra, a skeleton found in Périgueux was confidently 
declared to be that of an Eskimo. Quite what an ancient Eskimo was doing in southwest 
France was never comfortably explained. It was actually an early Cro-Magnon.) 

    It was against this background that Dubois began his search for ancient human bones. He 
did no digging himself, but instead used fifty convicts lent by the Dutch authorities. For a year 
they worked on Sumatra, then transferred to Java. And there in 1891, Dubois—or rather his 
team, for Dubois himself seldom visited the sites—found a section of ancient human cranium 
now known as the Trinil skullcap. Though only part of a skull, it showed that the owner had 
had distinctly nonhuman features but a much larger brain than any ape. Dubois called it 
Anthropithecus erectus (later changed for technical reasons to Pithecanthropus erectus) and 
declared it the missing link between apes and humans. It quickly became popularized as “Java 
Man.” Today we know it as Homo erectus. 

    The next year Dubois’s workers found a virtually complete thighbone that looked 
surprisingly modern. In fact, many anthropologists think itis modern, and has nothing to do 
with Java Man. If it is an erectus bone, it is unlike any other found since. Nonetheless Dubois 
used the thighbone to deduce—correctly, as it turned out—that Pithecanthropus walked 
upright. He also produced, with nothing but a scrap of cranium and one tooth, a model of the 
complete skull, which also proved uncannily accurate. 

    In 1895, Dubois returned to Europe, expecting a triumphal reception. In fact, he met nearly 
the opposite reaction. Most scientists disliked both his conclusions and the arrogant manner in 
which he presented them. The skullcap, they said, was that of an ape, probably a gibbon, and 
not of any early human. Hoping to bolster his case, in 1897 Dubois allowed a respected 
anatomist from the University of Strasbourg, Gustav Schwalbe, to make a cast of the skullcap. 
To Dubois’s dismay, Schwalbe thereupon produced a monograph that received far more 
sympathetic attention than anything Dubois had written and followed with a lecture tour in 
which he was celebrated nearly as warmly as if he had dug up the skull himself. Appalled and 
embittered, Dubois withdrew into an undistinguished position as a professor of geology at the 
University of Amsterdam and for the next two decades refused to let anyone examine his 
precious fossils again. He died in 1940 an unhappy man. 

  

    Meanwhile, and half a world away, in late 1924 Raymond Dart, the Australian-born head of 
anatomy at the University of the Witwatersrand in Johannesburg, was sent a small but 
remarkably complete skull of a child, with an intact face, a lower jaw, and what is known as 
an endocast—a natural cast of the brain—from a limestone quarry on the edge of the Kalahari 
Desert at a dusty spot called Taung. Dart could see at once that the Taung skull was not of a 
Homo erectus like Dubois’s Java Man, but from an earlier, more apelike creature. He placed 
its age at two million years and dubbed it Australopithecus africanus, or “southern ape man of 
Africa.” In a report to Nature, Dart called the Taung remains “amazingly human” and 



suggested the need for an entirely new family, Homo simiadae (“the man-apes”), to 
accommodate the find. 

    The authorities were even less favorably disposed to Dart than they had been to Dubois. 
Nearly everything about his theory—indeed, nearly everything about Dart, it appears—
annoyed them. First he had proved himself lamentably presumptuous by conducting the 
analysis himself rather than calling on the help of more worldly experts in Europe. Even his 
chosen name, Australopithecus, showed a lack of scholarly application, combining as it did 
Greek and Latin roots. Above all, his conclusions flew in the face of accepted wisdom. 
Humans and apes, it was agreed, had split apart at least fifteen million years ago in Asia. If 
humans had arisen in Africa, why, that would make us Negroid, for goodness sake. It was 
rather as if someone working today were to announce that he had found the ancestral bones of 
humans in, say, Missouri. It just didn’t fit with what was known. 

    Dart’s sole supporter of note was Robert Broom, a Scottish-born physician and 
paleontologist of considerable intellect and cherishably eccentric nature. It was Broom’s 
habit, for instance, to do his fieldwork naked when the weather was warm, which was often. 
He was also known for conducting dubious anatomical experiments on his poorer and more 
tractable patients. When the patients died, which was also often, he would sometimes bury 
their bodies in his back garden to dig up for study later. 

    Broom was an accomplished paleontologist, and since he was also resident in South Africa 
he was able to examine the Taung skull at first hand. He could see at once that it was as 
important as Dart supposed and spoke out vigorously on Dart’s behalf, but to no effect. For 
the next fifty years the received wisdom was that the Taung child was an ape and nothing 
more. Most textbooks didn’t even mention it. Dart spent five years working up a monograph, 
but could find no one to publish it. Eventually he gave up the quest to publish altogether 
(though he did continue hunting for fossils). For years, the skull—today recognized as one of 
the supreme treasures of anthropology—sat as a paperweight on a colleague’s desk. 

    At the time Dart made his announcement in 1924, only four categories of ancient hominid 
were known—Homo heidelbergensis, Homo rhodesiensis, Neandertals, and Dubois’s Java 
Man—but all that was about to change in a very big way. 

    First, in China, a gifted Canadian amateur named Davidson Black began to poke around at 
a place, Dragon Bone Hill, that was locally famous as a hunting ground for old bones. 
Unfortunately, rather than preserving the bones for study, the Chinese ground them up to 
make medicines. We can only guess how many priceless Homo erectus bones ended up as a 
sort of Chinese equivalent of bicarbonate of soda. The site had been much denuded by the 
time Black arrived, but he found a single fossilized molar and on the basis of that alone quite 
brilliantly announced the discovery of Sinanthropus pekinensis, which quickly became known 
as Peking Man. 

    At Black’s urging, more determined excavations were undertaken and many other bones 
found. Unfortunately all were lost the day after the Japanese attack on Pearl Harbor in 1941 
when a contingent of U.S. Marines, trying to spirit the bones (and themselves) out of the 
country, was intercepted by the Japanese and imprisoned. Seeing that their crates held nothing 
but bones, the Japanese soldiers left them at the roadside. It was the last that was ever seen of 
them. 



    In the meantime, back on Dubois’s old turf of Java, a team led by Ralph von Koenigswald 
had found another group of early humans, which became known as the Solo People from the 
site of their discovery on the Solo River at Ngandong. Koenigswald’s discoveries might have 
been more impressive still but for a tactical error that was realized too late. He had offered 
locals ten cents for every piece of hominid bone they could come up with, then discovered to 
his horror that they had been enthusiastically smashing large pieces into small ones to 
maximize their income. 

    In the following years as more bones were found and identified there came a flood of new 
names—Homo aurignacensis, Australopithecus transvaalensis, Paranthropus crassidens, 
Zinjanthropus boisei,and scores of others, nearly all involving a new genus type as well as a 
new species. By the 1950s, the number of named hominid types had risen to comfortably over 
a hundred. To add to the confusion, individual forms often went by a succession of different 
names as paleoanthropologists refined, reworked, and squabbled over classifications. Solo 
People were known variously as Homo soloensis, Homo primigenius asiaticus, Homo 
neanderthalensis soloensis, Homo sapiens soloensis, Homo erectus erectus, and, finally, plain 
Homo erectus . 

    In an attempt to introduce some order, in 1960 F. Clark Howell of the University of 
Chicago, following the suggestions of Ernst Mayr and others the previous decade, proposed 
cutting the number of genera to just two—Australopithecus and Homo —and rationalizing 
many of the species. The Java and Peking men both became Homo erectus. For a time order 
prevailed in the world of the hominids.2 It didn’t last. 

    After about a decade of comparative calm, paleoanthropology embarked on another period 
of swift and prolific discovery, which hasn’t abated yet. The 1960s produced Homo habilis, 
thought by some to be the missing link between apes and humans, but thought by others not to 
be a separate species at all. Then came (among many others) Homo ergaster, Homo 
louisleakeyi, Homo rudolfensis, Homo microcranus, and Homo antecessor, as well as a raft of 
australopithecines: A.afarensis, A. praegens, A. ramidus, A. walkeri, A. anamensis, and still 
others. Altogether, some twenty types of hominid are recognized in the literature today. 
Unfortunately, almost no two experts recognize the same twenty. 

    Some continue to observe the two hominid genera suggested by Howell in 1960, but others 
place some of the australopithecines in a separate genus called Paranthropus , and still others 
add an earlier group called Ardipithecus. Some put praegens into Australopithecus and some 
into a new classification, Homo antiquus, but most don’t recognize praegens as a separate 
species at all. There is no central authority that rules on these things. The only way a name 
becomes accepted is by consensus, and there is often very little of that. 

    A big part of the problem, paradoxically, is a shortage of evidence. Since the dawn of time, 
several billion human (or humanlike) beings have lived, each contributing a little genetic 
variability to the total human stock. Out of this vast number, the whole of our understanding 
of human prehistory is based on the remains, often exceedingly fragmentary, of perhaps five 
thousand individuals. “You could fit it all into the back of a pickup truck if you didn’t mind 

                                                 
2 Humans are put in the lamely Homimdae. Its members, traditionally called hominids, include any creatures 
(including extinct ones) that are more closely related to us than to any surviving chimpanzees. The apes, 
meanwhile, are lumped together in a family called Pongidae. Many authorities believe that chimps, gorillas, and 
orangutans should also be included in this family, with humans and chimps in a subfamily called Homininae. 
The upshot is that the creatures traditionally called hominids become, under this arrangement, hominins. (Leakey 
and others insist on that designation.) Hominoidea is the name of the aue sunerfamily which includes us. 



how much you jumbled everything up,” Ian Tattersall, the bearded and friendly curator of 
anthropology at the American Museum of Natural History in New York, replied when I asked 
him the size of the total world archive of hominid and early human bones. 

    The shortage wouldn’t be so bad if the bones were distributed evenly through time and 
space, but of course they are not. They appear randomly, often in the most tantalizing fashion. 
Homo erectus walked the Earth for well over a million years and inhabited territory from the 
Atlantic edge of Europe to the Pacific side of China, yet if you brought back to life every 
Homo erectus individual whose existence we can vouch for, they wouldn’t fill a school bus. 
Homo habilis consists of even less: just two partial skeletons and a number of isolated limb 
bones. Something as short-lived as our own civilization would almost certainly not be known 
from the fossil record at all. 

    “In Europe,” Tattersall offers by way of illustration, “you’ve got hominid skulls in Georgia 
dated to about 1.7 million years ago, but then you have a gap of almost a million years before 
the next remains turn up in Spain, right on the other side of the continent, and then you’ve got 
another 300,000-year gap before you get a Homo heidelbergensis in Germany—and none of 
them looks terribly much like any of the others.” He smiled. “It’s from these kinds of 
fragmentary pieces that you’re trying to work out the histories of entire species. It’s quite a 
tall order. We really have very little idea of the relationships between many ancient species—
which led to us and which were evolutionary dead ends. Some probably don’t deserve to be 
regarded as separate species at all.” 

    It is the patchiness of the record that makes each new find look so sudden and distinct from 
all the others. If we had tens of thousands of skeletons distributed at regular intervals through 
the historical record, there would be appreciably more degrees of shading. Whole new species 
don’t emerge instantaneously, as the fossil record implies, but gradually out of other, existing 
species. The closer you go back to a point of divergence, the closer the similarities are, so that 
it becomes exceedingly difficult, and sometimes impossible, to distinguish a late Homo 
erectus from an early Homo sapiens, since it is likely to be both and neither. Similar 
disagreements can often arise over questions of identification from fragmentary remains—
deciding, for instance, whether a particular bone represents a female Australopithecus boisei 
or a male Homo habilis. 

With so little to be certain about, scientists often have to make assumptions based on other 
objects found nearby, and these may be little more than valiant guesses. As Alan Walker and 
Pat Shipman have drily observed, if you correlate tool discovery with the species of creature 
most often found nearby, you would have to conclude that early hand tools were mostly made 
by antelopes. 

    Perhaps nothing better typifies the confusion than the fragmentary bundle of contradictions 
that was Homo habilis. Simply put, habilis bones make no sense. When arranged in sequence, 
they show males and females evolving at different rates and in different directions—the males 
becoming less apelike and more human with time, while females from the same period appear 
to be moving away from humanness toward greater apeness. Some authorities don’t believe 
habilis is a valid category at all. Tattersall and his colleague Jeffrey Schwartz dismiss it as a 
mere “wastebasket species”—one into which unrelated fossils “could be conveniently swept.” 
Even those who see habilis as an independent species don’t agree on whether it is of the same 
genus as us or is from a side branch that never came to anything. 



    Finally, but perhaps above all, human nature is a factor in all this. Scientists have a natural 
tendency to interpret finds in the way that most flatters their stature. It is a rare paleontologist 
indeed who announces that he has found a cache of bones but that they are nothing to get 
excited about. Or as John Reader understatedly observes in the book Missing Links, “It is 
remarkable how often the first interpretations of new evidence have confirmed the 
preconceptions of its discoverer.” 

    All this leaves ample room for arguments, of course, and nobody likes to argue more than 
paleoanthropologists. “And of all the disciplines in science, paleoanthropology boasts perhaps 
the largest share of egos,” say the authors of the recent Java Man —a book, it may be noted, 
that itself devotes long, wonderfully unselfconscious passages to attacks on the inadequacies 
of others, in particular the authors’ former close colleague Donald Johanson. Here is a small 
sampling: 

        In our years of collaboration at the institute he [Johanson] developed a well-
deserved, if unfortunate, reputation for unpredictable and high-decibel personal 
verbal assaults, sometimes accompanied by the tossing around of books or 
whatever else came conveniently to hand. 

    So, bearing in mind that there is little you can say about human prehistory that won’t be 
disputed by someone somewhere, other than that we most certainly had one, what we think 
we know about who we are and where we come from is roughly this: 

    For the first 99.99999 percent of our history as organisms, we were in the same ancestral 
line as chimpanzees. Virtually nothing is known about the prehistory of chimpanzees, but 
whatever they were, we were. Then about seven million years ago something major happened. 
A group of new beings emerged from the tropical forests of Africa and began to move about 
on the open savanna. 

    These were the australopithecines, and for the next five million years they would be the 
world’s dominant hominid species. (Austral is from the Latin for “southern” and has no 
connection in this context to Australia.) Australopithecines came in several varieties, some 
slender and gracile, like Raymond Dart’s Taung child, others more sturdy and robust, but all 
were capable of walking upright. Some of these species existed for well over a million years, 
others for a more modest few hundred thousand, but it is worth bearing in mind that even the 
least successful had histories many times longer than we have yet achieved. 

    The most famous hominid remains in the world are those of a 3.18-million-year-old 
australopithecine found at Hadar in Ethiopia in 1974 by a team led by Donald Johanson. 
Formally known as A.L. (for “Afar Locality”) 288–1, the skeleton became more familiarly 
known as Lucy, after the Beatles song “Lucy in the Sky with Diamonds.” Johanson has never 
doubted her importance. “She is our earliest ancestor, the missing link between ape and 
human,” he has said. 

    Lucy was tiny—just three and a half feet tall. She could walk, though how well is a matter 
of some dispute. She was evidently a good climber, too. Much else is unknown. Her skull was 
almost entirely missing, so little could be said with confidence about her brain size, though 
skull fragments suggested it was small. Most books describe Lucy’s skeleton as being 40 
percent complete, though some put it closer to half, and one produced by the American 
Museum of Natural History describes Lucy as two-thirds complete. The BBC television series 



Ape Man actually called it “a complete skeleton,” even while showing that it was anything 
but. 

    A human body has 206 bones, but many of these are repeated. If you have the left femur 
from a specimen, you don’t need the right to know its dimensions. Strip out all the redundant 
bones, and the total you are left with is 120—what is called a half skeleton. Even by this fairly 
accommodating standard, and even counting the slightest fragment as a full bone, Lucy 
constituted only 28 percent of a half skeleton (and only about 20 percent of a full one). 

    In The Wisdom of the Bones, Alan Walker recounts how he once asked Johanson how he 
had come up with a figure of 40 percent. Johanson breezily replied that he had discounted the 
106 bones of the hands and feet—more than half the body’s total, and a fairly important half, 
too, one would have thought, since Lucy’s principal defining attribute was the use of those 
hands and feet to deal with a changing world. At all events, rather less is known about Lucy 
than is generally supposed. It isn’t even actually known that she was a female. Her sex is 
merely presumed from her diminutive size. 

    Two years after Lucy’s discovery, at Laetoli in Tanzania Mary Leakey found footprints left 
by two individuals from—it is thought—the same family of hominids. The prints had been 
made when two australopithecines had walked through muddy ash following a volcanic 
eruption. The ash had later hardened, preserving the impressions of their feet for a distance of 
over twenty-three meters. 

    The American Museum of Natural History in New York has an absorbing diorama that 
records the moment of their passing. It depicts life-sized re-creations of a male and a female 
walking side by side across the ancient African plain. They are hairy and chimplike in 
dimensions, but have a bearing and gait that suggest humanness. The most striking feature of 
the display is that the male holds his left arm protectively around the female’s shoulder. It is a 
tender and affecting gesture, suggestive of close bonding. 

    The tableau is done with such conviction that it is easy to overlook the consideration that 
virtually everything above the footprints is imaginary. Almost every external aspect of the 
two figures—degree of hairiness, facial appendages (whether they had human noses or chimp 
noses), expressions, skin color, size and shape of the female’s breasts—is necessarily 
suppositional. We can’t even say that they were a couple. The female figure may in fact have 
been a child. Nor can we be certain that they were australopithecines. They are assumed to be 
australopithecines because there are no other known candidates. 

    I had been told that they were posed like that because during the building of the diorama 
the female figure kept toppling over, but Ian Tattersall insists with a laugh that the story is 
untrue. “Obviously we don’t know whether the male had his arm around the female or not, 
but we do know from the stride measurements that they were walking side by side and close 
together—close enough to be touching. It was quite an exposed area, so they were probably 
feeling vulnerable. That’s why we tried to give them slightly worried expressions.” 

    I asked him if he was troubled about the amount of license that was taken in reconstructing 
the figures. “It’s always a problem in making re-creations,” he agreed readily enough. “You 
wouldn’t believe how much discussion can go into deciding details like whether Neandertals 
had eyebrows or not. It was just the same for the Laetoli figures. We simply can’t know the 
details of what they looked like, but we can convey their size and posture and make some 
reasonable assumptions about their probable appearance. If I had it to do again, I think I might 



have made them just slightly more apelike and less human. These creatures weren’t humans. 
They were bipedal apes.” 

    Until very recently it was assumed that we were descended from Lucy and the Laetoli 
creatures, but now many authorities aren’t so sure. Although certain physical features (the 
teeth, for instance) suggest a possible link between us, other parts of the australopithecine 
anatomy are more troubling. In their book Extinct Humans, Tattersall and Schwartz point out 
that the upper portion of the human femur is very like that of the apes but not of the 
australopithecines; so if Lucy is in a direct line between apes and modern humans, it means 
we must have adopted an australopithecine femur for a million years or so, then gone back to 
an ape femur when we moved on to the next phase of our development. They believe, in fact, 
that not only was Lucy not our ancestor, she wasn’t even much of a walker. 

    “Lucy and her kind did not locomote in anything like the modern human fashion,” insists 
Tattersall. “Only when these hominids had to travel between arboreal habitats would they find 
themselves walking bipedally, ‘forced’ to do so by their own anatomies.” Johanson doesn’t 
accept this. “Lucy’s hips and the muscular arrangement of her pelvis,” he has written, “would 
have made it as hard for her to climb trees as it is for modern humans.” 

    Matters grew murkier still in 2001 and 2002 when four exceptional new specimens were 
found. One, discovered by Meave Leakey of the famous fossil-hunting family at Lake 
Turkana in Kenya and called Kenyanthropus platyops (“Kenyan flat-face”), is from about the 
same time as Lucy and raises the possibility that it was our ancestor and Lucy was an 
unsuccessful side branch. Also found in 2001 were Ardipithecus ramidus kadabba, dated at 
between 5.2 million and 5.8 million years old, and Orrorin tugenensis, thought to be 6 million 
years old, making it the oldest hominid yet found—but only for a brief while. In the summer 
of 2002 a French team working in the Djurab Desert of Chad (an area that had never before 
yielded ancient bones) found a hominid almost 7 million years old, which they labeled 
Sahelanthropus tchadensis. (Some critics believe that it was not human, but an early ape and 
therefore should be called Sahelpithecus.) All these were early creatures and quite primitive 
but they walked upright, and they were doing so far earlier than previously thought. 

    Bipedalism is a demanding and risky strategy. It means refashioning the pelvis into a full 
load-bearing instrument. To preserve the required strength, the birth canal must be 
comparatively narrow. This has two very significant immediate consequences and one longer-
term one. First, it means a lot of pain for any birthing mother and a greatly increased danger 
of fatality to mother and baby both. Moreover to get the baby’s head through such a tight 
space it must be born while its brain is still small—and while the baby, therefore, is still 
helpless. This means long-term infant care, which in turn implies solid male–female bonding. 

    All this is problematic enough when you are the intellectual master of the planet, but when 
you are a small, vulnerable australopithecine, with a brain about the size of an orange,3 the 
risk must have been enormous. 

                                                 
3 Absolute brain size does not tell you everything-or possibly sometimes even much. Elephants and whales both 
have brains larger than ours, but you wouldn't have much trouble outwitting them in contract negotiations. It is 
relative size that matters, a point that is often overlooked. As Gould notes, A. africanus had a brain of only 450 
cubic centimeters, smaller than that of a gorilla. But a typical africanus male weighed less than a hundred 
pounds, and a female much less still, whereas gorillas can easily top out at 600 pounds (Gould pp. 181-83). 
 



    So why did Lucy and her kind come down from the trees and out of the forests? Probably 
they had no choice. The slow rise of the Isthmus of Panama had cut the flow of waters from 
the Pacific into the Atlantic, diverting warming currents away from the Arctic and leading to 
the onset of an exceedingly sharp ice age in northern latitudes. In Africa, this would have 
produced seasonal drying and cooling, gradually turning jungle into savanna. “It was not so 
much that Lucy and her like left the forests,” John Gribbin has written, “but that the forests 
left them.” 

    But stepping out onto the open savanna also clearly left the early hominids much more 
exposed. An upright hominid could see better, but could also be seen better. Even now as a 
species, we are almost preposterously vulnerable in the wild. Nearly every large animal you 
can care to name is stronger, faster, and toothier than us. Faced with attack, modern humans 
have only two advantages. We have a good brain, with which we can devise strategies, and 
we have hands with which we can fling or brandish hurtful objects. We are the only creature 
that can harm at a distance. We can thus afford to be physically vulnerable. 

    All the elements would appear to have been in place for the rapid evolution of a potent 
brain, and yet that seems not to have happened. For over three million years, Lucy and her 
fellow australopithecines scarcely changed at all. Their brain didn’t grow and there is no sign 
that they used even the simplest tools. What is stranger still is that we now know that for 
about a million years they lived alongside other early hominids who did use tools, yet the 
australopithecines never took advantage of this useful technology that was all around them. 

    At one point between three and two million years ago, it appears there may have been as 
many as six hominid types coexisting in Africa. Only one, however, was fated to last: Homo, 
which emerged from the mists beginning about two million years ago. No one knows quite 
what the relationship was between australopithecines and Homo, but what is known is that 
they coexisted for something over a million years before all the australopithecines, robust and 
gracile alike, vanished mysteriously, and possibly abruptly, over a million years ago. No one 
knows why they disappeared. “Perhaps,” suggests Matt Ridley, “we ate them.” 

    Conventionally, the Homo line begins with Homo habilis, a creature about whom we know 
almost nothing, and concludes with us, Homo sapiens (literally “man the thinker”). In 
between, and depending on which opinions you value, there have been half a dozen other 
Homo species: Homo ergaster, Homo neanderthalensis, Homo rudolfensis, Homo 
heidelbergensis, Homo erectus, and Homo antecessor. 

    Homo habilis (“handy man”) was named by Louis Leakey and colleagues in 1964 and was 
so called because it was the first hominid to use tools, albeit very simple ones. It was a fairly 
primitive creature, much more chimpanzee than human, but its brain was about 50 percent 
larger than that of Lucy in gross terms and not much less large proportionally, so it was the 
Einstein of its day. No persuasive reason has ever been adduced for why hominid brains 
suddenly began to grow two million years ago. For a long time it was assumed that big brains 
and upright walking were directly related—that the movement out of the forests necessitated 
cunning new strategies that fed off of or promoted braininess—so it was something of a 
surprise, after the repeated discoveries of so many bipedal dullards, to realize that there was 
no apparent connection between them at all. 

    “There is simply no compelling reason we know of to explain why human brains got 
large,” says Tattersall. Huge brains are demanding organs: they make up only 2 percent of the 
body’s mass, but devour 20 percent of its energy. They are also comparatively picky in what 



they use as fuel. If you never ate another morsel of fat, your brain would not complain 
because it won’t touch the stuff. It wants glucose instead, and lots of it, even if it means short-
changing other organs. As Guy Brown notes: “The body is in constant danger of being 
depleted by a greedy brain, but cannot afford to let the brain go hungry as that would rapidly 
lead to death.” A big brain needs more food and more food means increased risk. 

    Tattersall thinks the rise of a big brain may simply have been an evolutionary accident. He 
believes with Stephen Jay Gould that if you replayed the tape of life—even if you ran it back 
only a relatively short way to the dawn of hominids—the chances are “quite unlikely” that 
modern humans or anything like them would be here now. 

    “One of the hardest ideas for humans to accept,” he says, “is that we are not the 
culmination of anything. There is nothing inevitable about our being here. It is part of our 
vanity as humans that we tend to think of evolution as a process that, in effect, was 
programmed to produce us. Even anthropologists tended to think this way right up until the 
1970s.” Indeed, as recently as 1991, in the popular textbook The Stages of Evolution, C. 
Loring Brace stuck doggedly to the linear concept, acknowledging just one evolutionary dead 
end, the robust australopithecines. Everything else represented a straightforward 
progression—each species of hominid carrying the baton of development so far, then handing 
it on to a younger, fresher runner. Now, however, it seems certain that many of these early 
forms followed side trails that didn’t come to anything. 

    Luckily for us, one did—a group of tool users, which seemed to arise from out of nowhere 
and overlapped with the shadowy and much disputed Homo habilis. This is Homo erectus, the 
species discovered by Eugène Dubois in Java in 1891. Depending on which sources you 
consult, it existed from about 1.8 million years ago to possibly as recently as twenty thousand 
or so years ago. 

    According to the Java Man authors, Homo erectus is the dividing line: everything that 
came before him was apelike in character; everything that came after was humanlike. Homo 
erectus was the first to hunt, the first to use fire, the first to fashion complex tools, the first to 
leave evidence of campsites, the first to look after the weak and frail. Compared with all that 
had gone before, Homo erectus was extremely human in form as well as behavior, its 
members long-limbed and lean, very strong (much stronger than modern humans), and with 
the drive and intelligence to spread successfully over huge areas. To other hominids, Homo 
erectus must have seemed terrifyingly powerful, fleet, and gifted. 

    Erectus was “the velociraptor of its day,” according to Alan Walker of Penn State 
University and one of the world’s leading authorities. If you were to look one in the eyes, it 
might appear superficially to be human, but “you wouldn’t connect. You’d be prey.” 
According to Walker, it had the body of an adult human but the brain of a baby. 

    Although erectus had been known about for almost a century it was known only from 
scattered fragments—not enough to come even close to making one full skeleton. So it wasn’t 
until an extraordinary discovery in Africa in the 1980s that its importance—or, at the very 
least, possible importance—as a precursor species for modern humans was fully appreciated. 
The remote valley of Lake Turkana (formerly Lake Rudolf) in Kenya is now one of the 
world’s most productive sites for early human remains, but for a very long time no one had 
thought to look there. It was only because Richard Leakey was on a flight that was diverted 
over the valley that he realized it might be more promising than had been thought. A team 
was dispatched to investigate, but at first found nothing. Then late one afternoon Kamoya 



Kimeu, Leakey’s most renowned fossil hunter, found a small piece of hominid brow on a hill 
well away from the lake. Such a site was unlikely to yield much, but they dug anyway out of 
respect for Kimeu’s instincts and to their astonishment found a nearly complete Homo erectus 
skeleton. It was from a boy aged between about nine and twelve who had died 1.54 million 
years ago. The skeleton had “an entirely modern body structure,” says Tattersall, in a way that 
was without precedent. The Turkana boy was “very emphatically one of us.” 

    Also found at Lake Turkana by Kimeu was KNM-ER 1808, a female 1.7 million years old, 
which gave scientists their first clue that Homo erectus was more interesting and complex 
than previously thought. The woman’s bones were deformed and covered in coarse growths, 
the result of an agonizing condition called hypervitaminosis A, which can come only from 
eating the liver of a carnivore. This told us first of all that Homo erectus was eating meat. 
Even more surprising was that the amount of growth showed that she had lived weeks or even 
months with the disease. Someone had looked after her. It was the first sign of tenderness in 
hominid evolution. 

    It was also discovered that Homo erectus skulls contained (or, in the view of some, possibly 
contained) a Broca’s area, a region of the frontal lobe of the brain associated with speech. 
Chimps don’t have such a feature. Alan Walker thinks the spinal canal didn’t have the size 
and complexity to enable speech, that they probably would have communicated about as well 
as modern chimps. Others, notably Richard Leakey, are convinced they could speak. 

    For a time, it appears, Homo erectus was the only hominid species on Earth. It was hugely 
adventurous and spread across the globe with what seems to have been breathtaking rapidity. 
The fossil evidence, if taken literally, suggests that some members of the species reached Java 
at about the same time as, or even slightly before, they left Africa. This has led some hopeful 
scientists to suggest that perhaps modern people arose not in Africa at all, but in Asia—which 
would be remarkable, not to say miraculous, as no possible precursor species have ever been 
found anywhere outside Africa. The Asian hominids would have had to appear, as it were, 
spontaneously. And anyway an Asian beginning would merely reverse the problem of their 
spread; you would still have to explain how the Java people then got to Africa so quickly. 

    There are several more plausible alternative explanations for how Homo erectus managed 
to turn up in Asia so soon after its first appearance in Africa. First, a lot of plus-or-minusing 
goes into the dating of early human remains. If the actual age of the African bones is at the 
higher end of the range of estimates or the Javan ones at the lower end, or both, then there is 
plenty of time for African erects to find their way to Asia. It is also entirely possible that older 
erectus bones await discovery in Africa. In addition, the Javan dates could be wrong 
altogether. 

    Now for the doubts. Some authorities don’t believe that the Turkana finds are Homo 
erectus at all. The snag, ironically, was that although the Turkana skeletons were admirably 
extensive, all othererectus fossils are inconclusively fragmentary. As Tattersall and Jeffrey 
Schwartz note in Extinct Humans, most of the Turkana skeleton “couldn’t be compared with 
anything else closely related to it because the comparable parts weren’t known!” The Turkana 
skeletons, they say, look nothing like any Asian Homo erectus and would never have been 
considered the same species except that they were contemporaries. Some authorities insist on 
calling the Turkana specimens (and any others from the same period) Homo ergaster. 
Tattersall and Schwartz don’t believe that goes nearly far enough. They believe it wasergaster 
“or a reasonably close relative” that spread to Asia from Africa, evolved intoHomo erectus, 
and then died out. 



    What is certain is that sometime well over a million years ago, some new, comparatively 
modern, upright beings left Africa and boldly spread out across much of the globe. They 
possibly did so quite rapidly, increasing their range by as much as twenty-five miles a year on 
average, all while dealing with mountain ranges, rivers, deserts, and other impediments and 
adapting to differences in climate and food sources. A particular mystery is how they passed 
along the west side of the Red Sea, an area of famously punishing aridity now, but even drier 
in the past. It is a curious irony that the conditions that prompted them to leave Africa would 
have made it much more difficult to do so. Yet somehow they managed to find their way 
around every barrier and to thrive in the lands beyond. 

    And that, I’m afraid, is where all agreement ends. What happened next in the history of 
human development is a matter of long and rancorous debate, as we shall see in the next 
chapter. 

    But it is worth remembering, before we move on, that all of these evolutionary jostlings 
over five million years, from distant, puzzled australopithecine to fully modern human, 
produced a creature that is still 98.4 percent genetically indistinguishable from the modern 
chimpanzee. There is more difference between a zebra and a horse, or between a dolphin and 
a porpoise, than there is between you and the furry creatures your distant ancestors left behind 
when they set out to take over the world. 
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SOMETIME ABOUT A million and a half years ago, some forgotten genius of the hominid 
world did an unexpected thing. He (or very possibly she) took one stone and carefully used it 
to shape another. The result was a simple teardrop-shaped hand axe, but it was the world’s 
first piece of advanced technology. 

    It was so superior to existing tools that soon others were following the inventor’s lead and 
making hand axes of their own. Eventually whole societies existed that seemed to do little 
else. “They made them in the thousands,” says Ian Tattersall. “There are some places in 
Africa where you literally can’t move without stepping on them. It’s strange because they are 
quite intensive objects to make. It was as if they made them for the sheer pleasure of it.” 

    From a shelf in his sunny workroom Tattersall took down an enormous cast, perhaps a foot 
and a half long and eight inches wide at its widest point, and handed it to me. It was shaped 
like a spearhead, but one the size of a stepping-stone. As a fiberglass cast it weighed only a 
few ounces, but the original, which was found in Tanzania, weighed twenty-five pounds. “It 
was completely useless as a tool,” Tattersall said. “It would have taken two people to lift it 
adequately, and even then it would have been exhausting to try to pound anything with it.” 

    “What was it used for then?” 

    Tattersall gave a genial shrug, pleased at the mystery of it. “No idea. It must have had some 
symbolic importance, but we can only guess what.” 

    The axes became known as Acheulean tools, after St. Acheul, a suburb of Amiens in 
northern France, where the first examples were found in the nineteenth century, and contrast 
with the older, simpler tools known as Oldowan, originally found at Olduvai Gorge in 
Tanzania. In older textbooks, Oldowan tools are usually shown as blunt, rounded, hand-sized 
stones. In fact, paleoanthropologists now tend to believe that the tool part of Oldowan rocks 
were the pieces flaked off these larger stones, which could then be used for cutting. 

    Now here’s the mystery. When early modern humans—the ones who would eventually 
become us—started to move out of Africa something over a hundred thousand years ago, 
Acheulean tools were the technology of choice. These early Homo sapiens loved their 
Acheulean tools, too. They carried them vast distances. Sometimes they even took unshaped 
rocks with them to make into tools later on. They were, in a word, devoted to the technology. 
But although Acheulean tools have been found throughout Africa, Europe, and western and 
central Asia, they have almost never been found in the Far East. This is deeply puzzling. 



    In the 1940s a Harvard paleontologist named Hallum Movius drew something called the 
Movius line, dividing the side with Acheulean tools from the one without. The line runs in a 
southeasterly direction across Europe and the Middle East to the vicinity of modern-day 
Calcutta and Bangladesh. Beyond the Movius line, across the whole of southeast Asia and 
into China, only the older, simpler Oldowan tools have been found. We know that Homo 
sapiens went far beyond this point, so why would they carry an advanced and treasured stone 
technology to the edge of the Far East and then just abandon it? 

    “That troubled me for a long time,” recalls Alan Thorne of the Australian National 
University in Canberra. “The whole of modern anthropology was built round the idea that 
humans came out of Africa in two waves—a first wave of Homo erectus, which became Java 
Man and Peking Man and the like, and a later, more advanced wave of Homo sapiens, which 
displaced the first lot. Yet to accept that you must believe thatHomo sapiens got so far with 
their more modern technology and then, for whatever reason, gave it up. It was all very 
puzzling, to say the least.” 

    As it turned out, there would be a great deal else to be puzzled about, and one of the most 
puzzling findings of all would come from Thorne’s own part of the world, in the outback of 
Australia. In 1968, a geologist named Jim Bowler was poking around on a long-dried lakebed 
called Mungo in a parched and lonely corner of western New South Wales when something 
very unexpected caught his eye. Sticking out of a crescent-shaped sand ridge of a type known 
as a lunette were some human bones. At the time, it was believed that humans had been in 
Australia for no more than 8,000 years, but Mungo had been dry for 12,000 years. So what 
was anyone doing in such an inhospitable place? 

    The answer, provided by carbon dating, was that the bones’ owner had lived there when 
Lake Mungo was a much more agreeable habitat, a dozen miles long, full of water and fish, 
fringed by pleasant groves of casuarina trees. To everyone’s astonishment, the bones turned 
out to be 23,000 years old. Other bones found nearby were dated to as much as 60,000 years. 
This was unexpected to the point of seeming practically impossible. At no time since 
hominids first arose on Earth has Australia not been an island. Any human beings who arrived 
there must have come by sea, in large enough numbers to start a breeding population, after 
crossing sixty miles or more of open water without having any way of knowing that a 
convenient landfall awaited them. Having landed, the Mungo people had then found their way 
more than two thousand miles inland from Australia’s north coast—the presumed point of 
entry—which suggests, according to a report in the Proceedings of the National Academy of 
Sciences, “that people may have first arrived substantially earlier than 60,000 years ago.” 

    How they got there and why they came are questions that can’t be answered. According to 
most anthropology texts, there’s no evidence that people could even speak 60,000 years ago, 
much less engage in the sorts of cooperative efforts necessary to build ocean-worthy craft and 
colonize island continents. 

    “There’s just a whole lot we don’t know about the movements of people before recorded 
history,” Alan Thorne told me when I met him in Canberra. “Do you know that when 
nineteenth-century anthropologists first got to Papua New Guinea, they found people in the 
highlands of the interior, in some of the most inaccessible terrain on earth, growing sweet 
potatoes. Sweet potatoes are native to South America. So how did they get to Papua New 
Guinea? We don’t know. Don’t have the faintest idea. But what is certain is that people have 
been moving around with considerable assuredness for longer than traditionally thought, and 
almost certainly sharing genes as well as information.” 



    The problem, as ever, is the fossil record. “Very few parts of the world are even vaguely 
amenable to the long-term preservation of human remains,” says Thorne, a sharp-eyed man 
with a white goatee and an intent but friendly manner. “If it weren’t for a few productive 
areas like Hadar and Olduvai in east Africa we’d know frighteningly little. And when you 
look elsewhere, often wedo know frighteningly little. The whole of India has yielded just one 
ancient human fossil, from about 300,000 years ago. Between Iraq and Vietnam—that’s a 
distance of some 5,000 kilometers—there have been just two: the one in India and a 
Neandertal in Uzbekistan.” He grinned. “That’s not a whole hell of a lot to work with. You’re 
left with the position that you’ve got a few productive areas for human fossils, like the Great 
Rift Valley in Africa and Mungo here in Australia, and very little in between. It’s not 
surprising that paleontologists have trouble connecting the dots.” 

    The traditional theory to explain human movements—and the one still accepted by the 
majority of people in the field—is that humans dispersed across Eurasia in two waves. The 
first wave consisted of Homo erectus, who left Africa remarkably quickly—almost as soon as 
they emerged as a species—beginning nearly two million years ago. Over time, as they settled 
in different regions, these early erects further evolved into distinctive types—into Java Man 
and Peking Man in Asia, and Homo heidelbergensis and finally Homo neanderthalensis in 
Europe. 

    Then, something over a hundred thousand years ago, a smarter, lither species of creature—
the ancestors of every one of us alive today—arose on the African plains and began radiating 
outward in a second wave. Wherever they went, according to this theory, these new Homo 
sapiens displaced their duller, less adept predecessors. Quite how they did this has always 
been a matter of disputation. No signs of slaughter have ever been found, so most authorities 
believe the newer hominids simply outcompeted the older ones, though other factors may also 
have contributed. “Perhaps we gave them smallpox,” suggests Tattersall. “There’s no real way 
of telling. The one certainty is that we are here now and they aren’t.” 

    These first modern humans are surprisingly shadowy. We know less about ourselves, 
curiously enough, than about almost any other line of hominids. It is odd indeed, as Tattersall 
notes, “that the most recent major event in human evolution—the emergence of our own 
species—is perhaps the most obscure of all.” Nobody can even quite agree where truly 
modern humans first appear in the fossil record. Many books place their debut at about 
120,000 years ago in the form of remains found at the Klasies River Mouth in South Africa, 
but not everyone accepts that these were fully modern people. Tattersall and Schwartz 
maintain that “whether any or all of them actually represent our species still awaits definitive 
clarification.” 

    The first undisputed appearance of Homo sapiens is in the eastern Mediterranean, around 
modern-day Israel, where they begin to show up about 100,000 years ago—but even there 
they are described (by Trinkaus and Shipman) as “odd, difficult-to-classify and poorly 
known.” Neandertals were already well established in the region and had a type of tool kit 
known as Mousterian, which the modern humans evidently found worthy enough to borrow. 
No Neandertal remains have ever been found in north Africa, but their tool kits turn up all 
over the place. Somebody must have taken them there: modern humans are the only 
candidate. It is also known that Neandertals and modern humans coexisted in some fashion 
for tens of thousands of years in the Middle East. “We don’t know if they time-shared the 
same space or actually lived side by side,” Tattersall says, but the moderns continued happily 
to use Neandertal tools—hardly convincing evidence of overwhelming superiority. No less 
curiously, Acheulean tools are found in the Middle East well over a million years ago, but 



scarcely exist in Europe until just 300,000 years ago. Again, why people who had the 
technology didn’t take the tools with them is a mystery. 

    For a long time, it was believed that the Cro-Magnons, as modern humans in Europe 
became known, drove the Neandertals before them as they advanced across the continent, 
eventually forcing them to its western margins, where essentially they had no choice but to 
fall in the sea or go extinct. In fact, it is now known that Cro-Magnons were in the far west of 
Europe at about the same time they were also coming in from the east. “Europe was a pretty 
empty place in those days,” Tattersall says. “They may not have encountered each other all 
that often, even with all their comings and goings.” One curiosity of the Cro-Magnons’ arrival 
is that it came at a time known to paleoclimatology as the Boutellier interval, when Europe 
was plunging from a period of relative mildness into yet another long spell of punishing cold. 
Whatever it was that drew them to Europe, it wasn’t the glorious weather. 

    In any case, the idea that Neandertals crumpled in the face of competition from newly 
arrived Cro-Magnons strains against the evidence at least a little. Neandertals were nothing if 
not tough. For tens of thousands of years they lived through conditions that no modern human 
outside a few polar scientists and explorers has experienced. During the worst of the ice ages, 
blizzards with hurricane-force winds were common. Temperatures routinely fell to 50 degrees 
below zero Fahrenheit. Polar bears padded across the snowy vales of southern England. 
Neandertals naturally retreated from the worst of it, but even so they will have experienced 
weather that was at least as bad as a modern Siberian winter. They suffered, to be sure—a 
Neandertal who lived much past thirty was lucky indeed—but as a species they were 
magnificently resilient and practically indestructible. They survived for at least a hundred 
thousand years, and perhaps twice that, over an area stretching from Gibraltar to Uzbekistan, 
which is a pretty successful run for any species of being. 

    Quite who they were and what they were like remain matters of disagreement and 
uncertainty. Right up until the middle of the twentieth century the accepted anthropological 
view of the Neandertal was that he was dim, stooped, shuffling, and simian—the 
quintessential caveman. It was only a painful accident that prodded scientists to reconsider 
this view. In 1947, while doing fieldwork in the Sahara, a Franco-Algerian paleontologist 
named Camille Arambourg took refuge from the midday sun under the wing of his light 
airplane. As he sat there, a tire burst from the heat, and the plane tipped suddenly, striking him 
a painful blow on the upper body. Later in Paris he went for an X-ray of his neck, and noticed 
that his own vertebrae were aligned exactly like those of the stooped and hulking Neandertal. 
Either he was physiologically primitive or Neandertal’s posture had been misdescribed. In 
fact, it was the latter. Neandertal vertebrae were not simian at all. It changed utterly how we 
viewed Neandertals—but only some of the time, it appears. 

    It is still commonly held that Neandertals lacked the intelligence or fiber to compete on 
equal terms with the continent’s slender and more cerebrally nimble newcomers, Homo 
sapiens. Here is a typical comment from a recent book: “Modern humans neutralized this 
advantage [the Neandertal’s considerably heartier physique] with better clothing, better fires 
and better shelter; meanwhile the Neandertals were stuck with an oversize body that required 
more food to sustain.” In other words, the very factors that had allowed them to survive 
successfully for a hundred thousand years suddenly became an insuperable handicap. 

    Above all the issue that is almost never addressed is that Neandertals had brains that were 
significantly larger than those of modern people—1.8 liters for Neandertals versus 1.4 for 
modern people, according to one calculation. This is more than the difference between 



modern Homo sapiens and late Homo erectus , a species we are happy to regard as barely 
human. The argument put forward is that although our brains were smaller, they were 
somehow more efficient. I believe I speak the truth when I observe that nowhere else in 
human evolution is such an argument made. 

    So why then, you may well ask, if the Neandertals were so stout and adaptable and 
cerebrally well endowed, are they no longer with us? One possible (but much disputed) 
answer is that perhaps they are. Alan Thorne is one of the leading proponents of an alternative 
theory, known as the multiregional hypothesis, which holds that human evolution has been 
continuous—that just as australopithecines evolved into Homo habilis and Homo 
heidelbergensis became over time Homo neanderthalensis, so modernHomo sapiens simply 
emerged from more ancient Homo forms.Homo erectus is, on this view, not a separate species 
but just a transitional phase. Thus modern Chinese are descended from ancient Homo erectus 
forebears in China, modern Europeans from ancient European Homo erectus, and so on. 
“Except that for me there are no Homo erectus,” says Thorne. “I think it’s a term which has 
outlived its usefulness. For me, Homo erectus is simply an earlier part of us. I believe only 
one species of humans has ever left Africa, and that species isHomo sapiens.” 

    Opponents of the multiregional theory reject it, in the first instance, on the grounds that it 
requires an improbable amount of parallel evolution by hominids throughout the Old World—
in Africa, China, Europe, the most distant islands of Indonesia, wherever they appeared. Some 
also believe that multiregionalism encourages a racist view that anthropology took a very long 
time to rid itself of. In the early 1960s, a famous anthropologist named Carleton Coon of the 
University of Pennsylvania suggested that some modern races have different sources of 
origin, implying that some of us come from more superior stock than others. This hearkened 
back uncomfortably to earlier beliefs that some modern races such as the African “Bushmen” 
(properly the Kalahari San) and Australian Aborigines were more primitive than others. 

    Whatever Coon may personally have felt, the implication for many people was that some 
races are inherently more advanced, and that some humans could essentially constitute 
different species. The view, so instinctively offensive now, was widely popularized in many 
respectable places until fairly recent times. I have before me a popular book published by 
Time-Life Publications in 1961 called The Epic of Man based on a series of articles in Life 
magazine. In it you can find such comments as “Rhodesian man . . . lived as recently as 
25,000 years ago and may have been an ancestor of the African Negroes. His brain size was 
close to that of Homo sapiens.” In other words black Africans were recently descended from 
creatures that were only “close” to Homo sapiens. 

    Thorne emphatically (and I believe sincerely) dismisses the idea that his theory is in any 
measure racist and accounts for the uniformity of human evolution by suggesting that there 
was a lot of movement back and forth between cultures and regions. “There’s no reason to 
suppose that people only went in one direction,” he says. “People were moving all over the 
place, and where they met they almost certainly shared genetic material through 
interbreeding. New arrivals didn’t replace the indigenous populations, they joined them. They 
became them.” He likens the situation to when explorers like Cook or Magellan encountered 
remote peoples for the first time. “They weren’t meetings of different species, but of the same 
species with some physical differences.” 

    What you actually see in the fossil record, Thorne insists, is a smooth, continuous 
transition. “There’s a famous skull from Petralona in Greece, dating from about 300,000 years 
ago, that has been a matter of contention among traditionalists because it seems in some ways 



Homo erectus but in other ways Homo sapiens. Well, what we say is that this is just what you 
would expect to find in species that were evolving rather than being displaced.” 

    One thing that would help to resolve matters would be evidence of interbreeding, but that is 
not at all easy to prove, or disprove, from fossils. In 1999, archeologists in Portugal found the 
skeleton of a child about four years old that died 24,500 years ago. The skeleton was modern 
overall, but with certain archaic, possibly Neandertal, characteristics: unusually sturdy leg 
bones, teeth bearing a distinctive “shoveling” pattern, and (though not everyone agrees on it) 
an indentation at the back of the skull called a suprainiac fossa, a feature exclusive to 
Neandertals. Erik Trinkaus of Washington University in St. Louis, the leading authority on 
Neandertals, announced the child to be a hybrid: proof that modern humans and Neandertals 
interbred. Others, however, were troubled that the Neandertal and modern features weren’t 
more blended. As one critic put it: “If you look at a mule, you don’t have the front end 
looking like a donkey and the back end looking like a horse.” 

    Ian Tattersall declared it to be nothing more than “a chunky modern child.” He accepts that 
there may well have been some “hanky-panky” between Neandertals and moderns, but 
doesn’t believe it could have resulted in reproductively successful offspring.1 “I don’t know 
of any two organisms from any realm of biology that are that different and still in the same 
species,” he says. 

     With the fossil record so unhelpful, scientists have turned increasingly to genetic studies, 
in particular the part known as mitochondrial DNA. Mitochondrial DNA was only discovered 
in 1964, but by the 1980s some ingenious souls at the University of California at Berkeley had 
realized that it has two features that lend it a particular convenience as a kind of molecular 
clock: it is passed on only through the female line, so it doesn’t become scrambled with 
paternal DNA with each new generation, and it mutates about twenty times faster than normal 
nuclear DNA, making it easier to detect and follow genetic patterns over time. By tracking the 
rates of mutation they could work out the genetic history and relationships of whole groups of 
people. 

    In 1987, the Berkeley team, led by the late Allan Wilson, did an analysis of mitochondrial 
DNA from 147 individuals and declared that the rise of anatomically modern humans 
occurred in Africa within the last 140,000 years and that “all present-day humans are 
descended from that population.” It was a serious blow to the multiregionalists. But then 
people began to look a little more closely at the data. One of the most extraordinary points—
almost too extraordinary to credit really—was that the “Africans” used in the study were 
actually African-Americans, whose genes had obviously been subjected to considerable 
mediation in the past few hundred years. Doubts also soon emerged about the assumed rates 
of mutations. 

    By 1992, the study was largely discredited. But the techniques of genetic analysis 
continued to be refined, and in 1997 scientists from the University of Munich managed to 
extract and analyze some DNA from the arm bone of the original Neandertal man, and this 
time the evidence stood up. The Munich study found that the Neandertal DNA was unlike any 
DNA found on Earth now, strongly indicating that there was no genetic connection between 
Neandertals and modern humans. Now this really was a blow to multiregionalism. 
                                                 
1 One possibility is that Neandertals and Cro-Magnons had different numbers of chromosomes, a complication 
that commonly arises when species that are close but not quite identical conjoin. In the equine world, for 
example, horses have 64 chromosomes and donkeys 62. Mate the two and you get an offspring with a 
reproductively useless number of chromosomes, 63. You have, in short, a sterile mule. 



    Then in late 2000 Nature and other publications reported on a Swedish study of the 
mitochondrial DNA of fifty-three people, which suggested that all modern humans emerged 
from Africa within the past 100,000 years and came from a breeding stock of no more than 
10,000 individuals. Soon afterward, Eric Lander, director of the Whitehead 
Institute/Massachusetts Institute of Technology Center for Genome Research, announced that 
modern Europeans, and perhaps people farther afield, are descended from “no more than a 
few hundred Africans who left their homeland as recently as 25,000 years ago.” 

    As we have noted elsewhere in the book, modern human beings show remarkably little 
genetic variability—“there’s more diversity in one social group of fifty-five chimps than in 
the entire human population,” as one authority has put it—and this would explain why. 
Because we are recently descended from a small founding population, there hasn’t been time 
enough or people enough to provide a source of great variability. It seemed a pretty severe 
blow to multiregionalism. “After this,” a Penn State academic told the Washington Post, 
“people won’t be too concerned about the multiregional theory, which has very little 
evidence.” 

    But all of this overlooked the more or less infinite capacity for surprise offered by the 
ancient Mungo people of western New South Wales. In early 2001, Thorne and his colleagues 
at the Australian National University reported that they had recovered DNA from the oldest of 
the Mungo specimens—now dated at 62,000 years—and that this DNA proved to be 
“genetically distinct.” 

    The Mungo Man, according to these findings, was anatomically modern—just like you and 
me—but carried an extinct genetic lineage. His mitochondrial DNA is no longer found in 
living humans, as it should be if, like all other modern people, he was descended from people 
who left Africa in the recent past. 

    “It turned everything upside down again,” says Thorne with undisguised delight. 

    Then other even more curious anomalies began to turn up. Rosalind Harding, a population 
geneticist at the Institute of Biological Anthropology in Oxford, while studying betaglobin 
genes in modern people, found two variants that are common among Asians and the 
indigenous people of Australia, but hardly exist in Africa. The variant genes, she is certain, 
arose more than 200,000 years ago not in Africa, but in east Asia—long before modern Homo 
sapiens reached the region. The only way to account for them is to say that ancestors of 
people now living in Asia included archaic hominids—Java Man and the like. Interestingly, 
this same variant gene—the Java Man gene, so to speak—turns up in modern populations in 
Oxfordshire. 

    Confused, I went to see Harding at the institute, which inhabits an old brick villa on 
Banbury Road in Oxford, in more or less the neighborhood where Bill Clinton spent his 
student days. Harding is a small and chirpy Australian, from Brisbane originally, with the rare 
knack for being amused and earnest at the same time. 

    “Don’t know,” she said at once, grinning, when I asked her how people in Oxfordshire 
harbored sequences of betaglobin that shouldn’t be there. “On the whole,” she went on more 
somberly, “the genetic record supports the out-of-Africa hypothesis. But then you find these 
anomalous clusters, which most geneticists prefer not to talk about. There’s huge amounts of 
information that would be available to us if only we could understand it, but we don’t yet. 
We’ve barely begun.” She refused to be drawn out on what the existence of Asian-origin 



genes in Oxfordshire tells us other than that the situation is clearly complicated. “All we can 
say at this stage is that it is very untidy and we don’t really know why.” 

    At the time of our meeting, in early 2002, another Oxford scientist named Bryan Sykes had 
just produced a popular book called The Seven Daughters of Eve in which, using studies of 
mitochondrial DNA, he had claimed to be able to trace nearly all living Europeans back to a 
founding population of just seven women—the daughters of Eve of the title—who lived 
between 10,000 and 45,000 years ago in the time known to science as the Paleolithic. To each 
of these women Sykes had given a name—Ursula, Xenia, Jasmine, and so on—and even a 
detailed personal history. (“Ursula was her mother’s second child. The first had been taken by 
a leopard when he was only two. . . .”) 

    When I asked Harding about the book, she smiled broadly but carefully, as if not quite 
certain where to go with her answer. “Well, I suppose you must give him some credit for 
helping to popularize a difficult subject,” she said and paused thoughtfully. “And there 
remains the remote possibility that he’s right.” She laughed, then went on more intently: 
“Data from any single gene cannot really tell you anything so definitive. If you follow the 
mitochondrial DNA backwards, it will take you to a certain place—to an Ursula or Tara or 
whatever. But if you take any other bit of DNA, any gene at all, and traceit back, it will take 
you someplace else altogether.” 

    It was a little, I gathered, like following a road randomly out of London and finding that 
eventually it ends at John O’Groats, and concluding from this that anyone in London must 
therefore have come from the north of Scotland. They might have come from there, of course, 
but equally they could have arrived from any of hundreds of other places. In this sense, 
according to Harding, every gene is a different highway, and we have only barely begun to 
map the routes. “No single gene is ever going to tell you the whole story,” she said. 

    So genetic studies aren’t to be trusted? 

    “Oh you can trust the studies well enough, generally speaking. What you can’t trust are the 
sweeping conclusions that people often attach to them.” 

    She thinks out-of-Africa is “probably 95 percent correct,” but adds: “I think both sides have 
done a bit of a disservice to science by insisting that it must be one thing or the other. Things 
are likely to turn out to be not so straightforward as either camp would have you believe. The 
evidence is clearly starting to suggest that there were multiple migrations and dispersals in 
different parts of the world going in all kinds of directions and generally mixing up the gene 
pool. That’s never going to be easy to sort out.” 

    Just at this time, there were also a number of reports questioning the reliability of claims 
concerning the recovery of very ancient DNA. An academic writing in Nature had noted how 
a paleontologist, asked by a colleague whether he thought an old skull was varnished or not, 
had licked its top and announced that it was. “In the process,” noted the Nature article, “large 
amounts of modern human DNA would have been transferred to the skull,” rendering it 
useless for future study. I asked Harding about this. “Oh, it would almost certainly have been 
contaminated already,” she said. “Just handling a bone will contaminate it. Breathing on it 
will contaminate it. Most of the water in our labs will contaminate it. We are all swimming in 
foreign DNA. In order to get a reliably clean specimen you have to excavate it in sterile 
conditions and do the tests on it at the site. It is the trickiest thing in the world not to 
contaminate a specimen.” 



    So should such claims be treated dubiously? I asked. 

    Harding nodded solemnly. “Very,” she said. 

     If you wish to understand at once why we know as little as we do about human origins, I 
have the place for you. It is to be found a little beyond the edge of the blue Ngong Hills in 
Kenya, to the south and west of Nairobi. Drive out of the city on the main highway to 
Uganda, and there comes a moment of startling glory when the ground falls away and you are 
presented with a hang glider’s view of boundless, pale green African plain. 

    This is the Great Rift Valley, which arcs across three thousand miles of east Africa, 
marking the tectonic rupture that is setting Africa adrift from Asia. Here, perhaps forty miles 
out of Nairobi, along the baking valley floor, is an ancient site called Olorgesailie, which once 
stood beside a large and pleasant lake. In 1919, long after the lake had vanished, a geologist 
named J. W. Gregory was scouting the area for mineral prospects when he came across a 
stretch of open ground littered with anomalous dark stones that had clearly been shaped by 
human hand. He had found one of the great sites of Acheulean tool manufacture that Ian 
Tattersall had told me about. 

    Unexpectedly in the autumn of 2002 I found myself a visitor to this extraordinary site. I 
was in Kenya for another purpose altogether, visiting some projects run by the charity CARE 
International, but my hosts, knowing of my interest in humans for the present volume, had 
inserted a visit to Olorgesailie into the schedule. 

    After its discovery by Gregory, Olorgesailie lay undisturbed for over two decades before 
the famed husband-and-wife team of Louis and Mary Leakey began an excavation that isn’t 
completed yet. What the Leakeys found was a site stretching to ten acres or so, where tools 
were made in incalculable numbers for roughly a million years, from about 1.2 million years 
ago to 200,000 years ago. Today the tool beds are sheltered from the worst of the elements 
beneath large tin lean-tos and fenced off with chicken wire to discourage opportunistic 
scavenging by visitors, but otherwise the tools are left just where their creators dropped them 
and where the Leakeys found them. 

    Jillani Ngalli, a keen young man from the Kenyan National Museum who had been 
dispatched to act as guide, told me that the quartz and obsidian rocks from which the axes 
were made were never found on the valley floor. “They had to carry the stones from there,” he 
said, nodding at a pair of mountains in the hazy middle distance, in opposite directions from 
the site: Olorgesailie and Ol Esakut. Each was about ten kilometers, or six miles, away—a 
long way to carry an armload of stone. 

    Why the early Olorgesailie people went to such trouble we can only guess, of course. Not 
only did they lug hefty stones considerable distances to the lakeside, but, perhaps even more 
remarkably, they then organized the site. The Leakeys’ excavations revealed that there were 
areas where axes were fashioned and others where blunt axes were brought to be resharpened. 
Olorgesailie was, in short, a kind of factory; one that stayed in business for a million years. 

    Various replications have shown that the axes were tricky and labor-intensive objects to 
make—even with practice, an axe would take hours to fashion—and yet, curiously, they were 
not particularly good for cutting or chopping or scraping or any of the other tasks to which 
they were presumably put. So we are left with the position that for a million years—far, far 
longer than our own species has even been in existence, much less engaged in continuous 



cooperative efforts—early people came in considerable numbers to this particular site to make 
extravagantly large numbers of tools that appear to have been rather curiously pointless. 

    And who were these people? We have no idea actually. We assume they were Homo 
erectus because there are no other known candidates, which means that at their peak—their 
peak —the Olorgesailie workers would have had the brains of a modern infant. But there is no 
physical evidence on which to base a conclusion. Despite over sixty years of searching, no 
human bone has ever been found in or around the vicinity of Olorgesailie. However much 
time they spent there shaping rocks, it appears they went elsewhere to die. 

    “It’s all a mystery,” Jillani Ngalli told me, beaming happily. 

    The Olorgesailie people disappeared from the scene about 200,000 years ago when the lake 
dried up and the Rift Valley started to become the hot and challenging place it is today. But 
by this time their days as a species were already numbered. The world was about to get its 
first real master race, Homo sapiens . Things would never be the same again. 



30    GOOD-BYE 

 

 

 

IN THE EARLY 1680s, at just about the time that Edmond Halley and his friends Christopher 
Wren and Robert Hooke were settling down in a London coffeehouse and embarking on the 
casual wager that would result eventually in Isaac Newton’s Principia , Henry Cavendish’s 
weighing of the Earth, and many of the other inspired and commendable undertakings that 
have occupied us for much of the past four hundred pages, a rather less desirable milestone 
was being passed on the island of Mauritius, far out in the Indian Ocean some eight hundred 
miles off the east coast of Madagascar. 

    There, some forgotten sailor or sailor’s pet was harrying to death the last of the dodos, the 
famously flightless bird whose dim but trusting nature and lack of leggy zip made it a rather 
irresistible target for bored young tars on shore leave. Millions of years of peaceful isolation 
had not prepared it for the erratic and deeply unnerving behavior of human beings. 

    We don’t know precisely the circumstances, or even year, attending the last moments of the 
last dodo, so we don’t know which arrived first, a world that contained a Principia or one that 
had no dodos, but we do know that they happened at more or less the same time. You would 
be hard pressed, I would submit, to find a better pairing of occurrences to illustrate the divine 
and felonious nature of the human being—a species of organism that is capable of unpicking 
the deepest secrets of the heavens while at the same time pounding into extinction, for no 
purpose at all, a creature that never did us any harm and wasn’t even remotely capable of 
understanding what we were doing to it as we did it. Indeed, dodos were so spectacularly 
short on insight, it is reported, that if you wished to find all the dodos in a vicinity you had 
only to catch one and set it to squawking, and all the others would waddle along to see what 
was up. 

    The indignities to the poor dodo didn’t end quite there. In 1755, some seventy years after 
the last dodo’s death, the director of the Ashmolean Museum in Oxford decided that the 
institution’s stuffed dodo was becoming unpleasantly musty and ordered it tossed on a 
bonfire. This was a surprising decision as it was by this time the only dodo in existence, 
stuffed or otherwise. A passing employee, aghast, tried to rescue the bird but could save only 
its head and part of one limb. 

    As a result of this and other departures from common sense, we are not now entirely sure 
what a living dodo was like. We possess much less information than most people suppose—a 
handful of crude descriptions by “unscientific voyagers, three or four oil paintings, and a few 
scattered osseous fragments,” in the somewhat aggrieved words of the nineteenth-century 
naturalist H. E. Strickland. As Strickland wistfully observed, we have more physical evidence 
of some ancient sea monsters and lumbering saurapods than we do of a bird that lived into 
modern times and required nothing of us to survive except our absence. 

    So what is known of the dodo is this: it lived on Mauritius, was plump but not tasty, and 
was the biggest-ever member of the pigeon family, though by quite what margin is unknown 
as its weight was never accurately recorded. Extrapolations from Strickland’s “osseous 



fragments” and the Ashmolean’s modest remains show that it was a little over two and a half 
feet tall and about the same distance from beak tip to backside. Being flightless, it nested on 
the ground, leaving its eggs and chicks tragically easy prey for pigs, dogs, and monkeys 
brought to the island by outsiders. It was probably extinct by 1683 and was most certainly 
gone by 1693. Beyond that we know almost nothing except of course that we will not see its 
like again. We know nothing of its reproductive habits and diet, where it ranged, what sounds 
it made in tranquility or alarm. We don’t possess a single dodo egg. 

    From beginning to end our acquaintance with animate dodos lasted just seventy years. That 
is a breathtakingly scanty period—though it must be said that by this point in our history we 
did have thousands of years of practice behind us in the matter of irreversible eliminations. 
Nobody knows quite how destructive human beings are, but it is a fact that over the last fifty 
thousand years or so wherever we have gone animals have tended to vanish, in often 
astonishingly large numbers. 

    In America, thirty genera of large animals—some very large indeed—disappeared 
practically at a stroke after the arrival of modern humans on the continent between ten and 
twenty thousand years ago. Altogether North and South America between them lost about 
three quarters of their big animals once man the hunter arrived with his flint-headed spears 
and keen organizational capabilities. Europe and Asia, where the animals had had longer to 
evolve a useful wariness of humans, lost between a third and a half of their big creatures. 
Australia, for exactly the opposite reasons, lost no less than 95 percent. 

    Because the early hunter populations were comparatively small and the animal populations 
truly monumental—as many as ten million mammoth carcasses are thought to lie frozen in the 
tundra of northern Siberia alone—some authorities think there must be other explanations, 
possibly involving climate change or some kind of pandemic. As Ross MacPhee of the 
American Museum of Natural History put it: “There’s no material benefit to hunting 
dangerous animals more often than you need to—there are only so many mammoth steaks 
you can eat.” Others believe it may have been almost criminally easy to catch and clobber 
prey. “In Australia and the Americas,” says Tim Flannery, “the animals probably didn’t know 
enough to run away.” 

    Some of the creatures that were lost were singularly spectacular and would take a little 
managing if they were still around. Imagine ground sloths that could look into an upstairs 
window, tortoises nearly the size of a small Fiat, monitor lizards twenty feet long basking 
beside desert highways in Western Australia. Alas, they are gone and we live on a much 
diminished planet. Today, across the whole world, only four types of really hefty (a metric ton 
or more) land animals survive: elephants, rhinos, hippos, and giraffes. Not for tens of millions 
of years has life on Earth been so diminutive and tame. 

    The question that arises is whether the disappearances of the Stone Age and disappearances 
of more recent times are in effect part of a single extinction event—whether, in short, humans 
are inherently bad news for other living things. The sad likelihood is that we may well be. 
According to the University of Chicago paleontologist David Raup, the background rate of 
extinction on Earth throughout biological history has been one species lost every four years 
on average. According to one recent calculation, human-caused extinction now may be 
running as much as 120,000 times that level. 

    In the mid-1990s, the Australian naturalist Tim Flannery, now head of the South Australian 
Museum in Adelaide, became struck by how little we seemed to know about many 



extinctions, including relatively recent ones. “Wherever you looked, there seemed to be gaps 
in the records—pieces missing, as with the dodo, or not recorded at all,” he told me when I 
met him in Melbourne a year or so ago. 

    Flannery recruited his friend Peter Schouten, an artist and fellow Australian, and together 
they embarked on a slightly obsessive quest to scour the world’s major collections to find out 
what was lost, what was left, and what had never been known at all. They spent four years 
picking through old skins, musty specimens, old drawings, and written descriptions—
whatever was available. Schouten made life-sized paintings of every animal they could 
reasonably re-create, and Flannery wrote the words. The result was an extraordinary book 
called A Gap in Nature, constituting the most complete—and, it must be said, moving—
catalog of animal extinctions from the last three hundred years. 

    For some animals, records were good, but nobody had done anything much with them, 
sometimes for years, sometimes forever. Steller’s sea cow, a walrus-like creature related to 
the dugong, was one of the last really big animals to go extinct. It was truly enormous—an 
adult could reach lengths of nearly thirty feet and weigh ten tons—but we are acquainted with 
it only because in 1741 a Russian expedition happened to be shipwrecked on the only place 
where the creatures still survived in any numbers, the remote and foggy Commander Islands 
in the Bering Sea. 

    Happily, the expedition had a naturalist, Georg Steller, who was fascinated by the animal. 
“He took the most copious notes,” says Flannery. “He even measured the diameter of its 
whiskers. The only thing he wouldn’t describe was the male genitals—though, for some 
reason, he was happy enough to do the female’s. He even saved a piece of skin, so we had a 
good idea of its texture. We weren’t always so lucky.” 

    The one thing Steller couldn’t do was save the sea cow itself. Already hunted to the brink 
of extinction, it would be gone altogether within twenty-seven years of Steller’s discovery of 
it. Many other animals, however, couldn’t be included because too little is known about them. 
The Darling Downs hopping mouse, Chatham Islands swan, Ascension Island flightless crake, 
at least five types of large turtle, and many others are forever lost to us except as names. 

    A great deal of extinction, Flannery and Schouten discovered, hasn’t been cruel or wanton, 
but just kind of majestically foolish. In 1894, when a lighthouse was built on a lonely rock 
called Stephens Island, in the tempestuous strait between the North and South Islands of New 
Zealand, the lighthouse keeper’s cat kept bringing him strange little birds that it had caught. 
The keeper dutifully sent some specimens to the museum in Wellington. There a curator grew 
very excited because the bird was a relic species of flightless wrens—the only example of a 
flightless perching bird ever found anywhere. He set off at once for the island, but by the time 
he got there the cat had killed them all. Twelve stuffed museum species of the Stephens Island 
flightless wren are all that now exist. 

    At least we have those. All too often, it turns out, we are not much better at looking after 
species after they have gone than we were before they went. Take the case of the lovely 
Carolina parakeet. Emerald green, with a golden head, it was arguably the most striking and 
beautiful bird ever to live in North America—parrots don’t usually venture so far north, as 
you may have noticed—and at its peak it existed in vast numbers, exceeded only by the 
passenger pigeon. But the Carolina parakeet was also considered a pest by farmers and easily 
hunted because it flocked tightly and had a peculiar habit of flying up at the sound of gunfire 
(as you would expect), but then returning almost at once to check on fallen comrades. 



    In his classic American Omithology, written in the early nineteenth century, Charles 
Willson Peale describes an occasion in which he repeatedly empties a shotgun into a tree in 
which they roost: 

    At each successive discharge, though showers of them fell, yet the affection of the 
survivors seemed rather to increase; for, after a few circuits around the place, they again 
alighted near me, looking down on their slaughtered companions with such manifest 
symptoms of sympathy and concern, as entirely disarmed me. 

    By the second decade of the twentieth century, the birds had been so relentlessly hunted 
that only a few remained alive in captivity. The last one, named Inca, died in the Cincinnati 
Zoo in 1918 (not quite four years after the last passenger pigeon died in the same zoo) and 
was reverently stuffed. And where would you go to see poor Inca now? Nobody knows. The 
zoo lost it. 

    What is both most intriguing and puzzling about the story above is that Peale was a lover of 
birds, and yet did not hesitate to kill them in large numbers for no better reason than that it 
interested him to do so. It is a truly astounding fact that for the longest time the people who 
were most intensely interested in the world’s living things were the ones most likely to 
extinguish them. 

    No one represented this position on a larger scale (in every sense) than Lionel Walter 
Rothschild, the second Baron Rothschild. Scion of the great banking family, Rothschild was a 
strange and reclusive fellow. He lived his entire life in the nursery wing of his home at Tring, 
in Buckinghamshire, using the furniture of his childhood—even sleeping in his childhood 
bed, though eventually he weighed three hundred pounds. 

    His passion was natural history and he became a devoted accumulator of objects. He sent 
hordes of trained men—as many as four hundred at a time—to every quarter of the globe to 
clamber over mountains and hack their way through jungles in the pursuit of new 
specimens—particularly things that flew. These were crated or boxed up and sent back to 
Rothschild’s estate at Tring, where he and a battalion of assistants exhaustively logged and 
analyzed everything that came before them, producing a constant stream of books, papers, and 
monographs—some twelve hundred in all. Altogether, Rothschild’s natural history factory 
processed well over two million specimens and added five thousand species of creature to the 
scientific archive. 

    Remarkably, Rothschild’s collecting efforts were neither the most extensive nor the most 
generously funded of the nineteenth century. That title almost certainly belongs to a slightly 
earlier but also very wealthy British collector named Hugh Cuming, who became so 
preoccupied with accumulating objects that he built a large oceangoing ship and employed a 
crew to sail the world full-time, picking up whatever they could find—birds, plants, animals 
of all types, and especially shells. It was his unrivaled collection of barnacles that passed to 
Darwin and served as the basis for his seminal study. 

    However, Rothschild was easily the most scientific collector of his age, though also the 
most regrettably lethal, for in the 1890s he became interested in Hawaii, perhaps the most 
temptingly vulnerable environment Earth has yet produced. Millions of years of isolation had 
allowed Hawaii to evolve 8,800 unique species of animals and plants. Of particular interest to 
Rothschild were the islands’ colorful and distinctive birds, often consisting of very small 
populations inhabiting extremely specific ranges. 



    The tragedy for many Hawaiian birds was that they were not only distinctive, desirable, and 
rare—a dangerous combination in the best of circumstances—but also often heartbreakingly 
easy to take. The greater koa finch, an innocuous member of the honeycreeper family, lurked 
shyly in the canopies of koa trees, but if someone imitated its song it would abandon its cover 
at once and fly down in a show of welcome. The last of the species vanished in 1896, killed 
by Rothschild’s ace collector Harry Palmer, five years after the disappearance of its cousin the 
lesser koa finch, a bird so sublimely rare that only one has ever been seen: the one shot for 
Rothschild’s collection. Altogether during the decade or so of Rothschild’s most intensive 
collecting, at least nine species of Hawaiian birds vanished, but it may have been more. 

    Rothschild was by no means alone in his zeal to capture birds at more or less any cost. 
Others in fact were more ruthless. In 1907 when a well-known collector named Alanson 
Bryan realized that he had shot the last three specimens of black mamos, a species of forest 
bird that had only been discovered the previous decade, he noted that the news filled him with 
“joy.” 

    It was, in short, a difficult age to fathom—a time when almost any animal was persecuted if 
it was deemed the least bit intrusive. In 1890, New York State paid out over one hundred 
bounties for eastern mountain lions even though it was clear that the much-harassed creatures 
were on the brink of extinction. Right up until the 1940s many states continued to pay 
bounties for almost any kind of predatory creature. West Virginia gave out an annual college 
scholarship to whoever brought in the most dead pests—and “pests” was liberally interpreted 
to mean almost anything that wasn’t grown on farms or kept as pets. 

    Perhaps nothing speaks more vividly for the strangeness of the times than the fate of the 
lovely little Bachman’s warbler. A native of the southern United States, the warbler was 
famous for its unusually thrilling song, but its population numbers, never robust, gradually 
dwindled until by the 1930s the warbler vanished altogether and went unseen for many years. 
Then in 1939, by happy coincidence two separate birding enthusiasts, in widely separated 
locations, came across lone survivors just two days apart. They both shot the birds, and that 
was the last that was ever seen of Bachman’s warblers. 

    The impulse to exterminate was by no means exclusively American. In Australia, bounties 
were paid on the Tasmanian tiger (properly the thylacine), a doglike creature with distinctive 
“tiger” stripes across its back, until shortly before the last one died, forlorn and nameless, in a 
private Hobart zoo in 1936. Go to the Tasmanian Museum today and ask to see the last of this 
species—the only large carnivorous marsupial to live into modern times—and all they can 
show you are photographs. The last surviving thylacine was thrown out with the weekly trash. 

  

    I mention all this to make the point that if you were designing an organism to look after life 
in our lonely cosmos, to monitor where it is going and keep a record of where it has been, you 
wouldn’t choose human beings for the job. 

    But here’s an extremely salient point: we have been chosen, by fate or Providence or 
whatever you wish to call it. As far as we can tell, we are the best there is. We may be all 
there is. It’s an unnerving thought that we may be the living universe’s supreme achievement 
and its worst nightmare simultaneously. 



    Because we are so remarkably careless about looking after things, both when alive and 
when not, we have no idea—really none at all—about how many things have died off 
permanently, or may soon, or may never, and what role we have played in any part of the 
process. In 1979, in the book The Sinking Ark, the author Norman Myers suggested that 
human activities were causing about two extinctions a week on the planet. By the early 1990s 
he had raised the figure to some six hundred per week. (That’s extinctions of all types—
plants, insects, and so on as well as animals.) Others have put the figure even higher—to well 
over a thousand a week. A United Nations report of 1995, on the other hand, put the total 
number of known extinctions in the last four hundred years at slightly under 500 for animals 
and slightly over 650 for plants—while allowing that this was “almost certainly an 
underestimate,” particularly with regard to tropical species. A few interpreters think most 
extinction figures are grossly inflated. 

    The fact is, we don’t know. Don’t have any idea. We don’t know when we started doing 
many of the things we’ve done. We don’t know what we are doing right now or how our 
present actions will affect the future. What we do know is that there is only one planet to do it 
on, and only one species of being capable of making a considered difference. Edward O. 
Wilson expressed it with unimprovable brevity in The Diversity of Life: “One planet, one 
experiment.” 

    If this book has a lesson, it is that we are awfully lucky to be here—and by “we” I mean 
every living thing. To attain any kind of life in this universe of ours appears to be quite an 
achievement. As humans we are doubly lucky, of course: We enjoy not only the privilege of 
existence but also the singular ability to appreciate it and even, in a multitude of ways, to 
make it better. It is a talent we have only barely begun to grasp. 

    We have arrived at this position of eminence in a stunningly short time. Behaviorally 
modern human beings—that is, people who can speak and make art and organize complex 
activities—have existed for only about 0.0001 percent of Earth’s history. But surviving for 
even that little while has required a nearly endless string of good fortune. 

    We really are at the beginning of it all. The trick, of course, is to make sure we never find 
the end. And that, almost certainly, will require a good deal more than lucky breaks. 

 

 

 


